Multi-messenger signals from Tidal Disruption Events

DESY Science Communication Lab

Walter Winter DESY, Zeuthen, Germany

Annual meeting of the German Astronomical Society

Berlin, Germany September 11-15, 2023

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Contents

- Introduction
- The electromagnetic picture of TDEs
- Neutrinos from TDEs (observations)
- Interpretation
- Summary

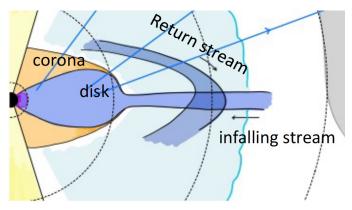
Introduction

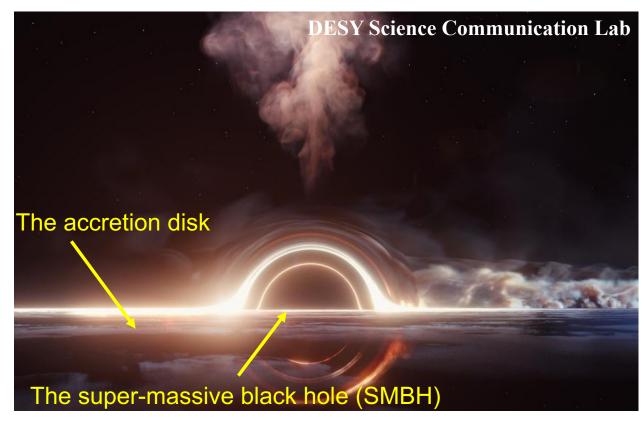
Tidal Disuption Events – the electromagnetic picture

How to disrupt a star 101

Gravity

 Force on a mass element in the star (by gravitation) ~ force exerted by the SMBH at distance (tidal radius)

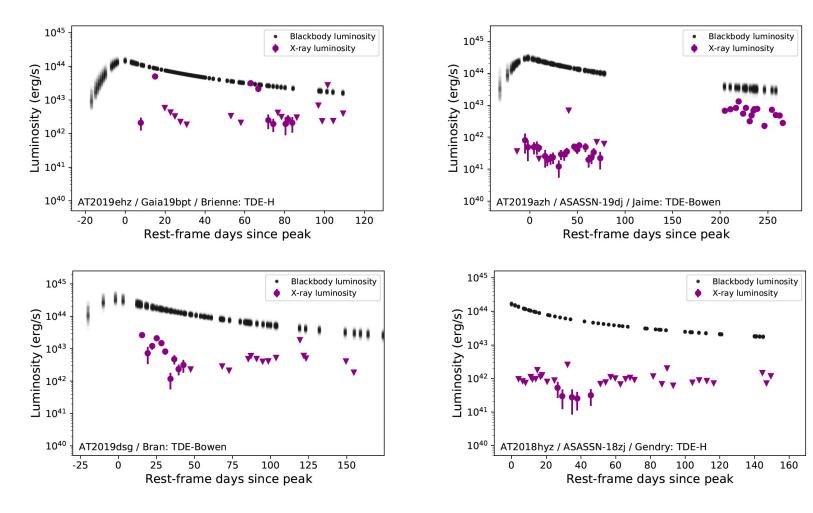

$$r_t = \left(\frac{2M}{m}\right)^{1/3} R \simeq 8.8 \times 10^{12} \,\mathrm{cm} \,\left(\frac{M}{10^6 \,M_\odot}\right)^{1/3} \frac{R}{R_\odot} \left(\frac{m}{M_\odot}\right)^{-1/3}$$


• Has to be beyond Schwarzschild radius for TDE

$$R_s = \frac{2MG}{c^2} \simeq 3 \times 10^{11} \,\mathrm{cm} \left(\frac{M}{10^6 \,M_\odot}\right)$$

• From the comparison ($r_t > R_s$) and demographics, one obtains (theory) M <~ 2 10⁷ M_{\odot} (lower limit less certain ...)

Hills, 1975; Kochanek, 2016; van Velzen 2017

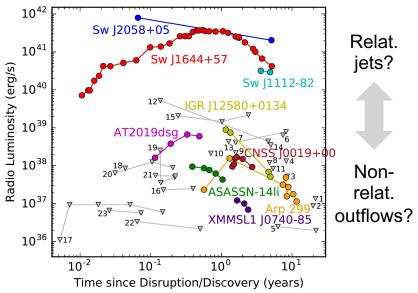

Energetics

 Measure for the luminosity which can be re-processed from accretion through the SMBH: Eddington luminosity

 $L_{\rm Edd} \simeq 1.3 \ 10^{44} \ {\rm erg/s} \left(M/(10^6 \ M_{\odot}) \right)$

- Energy to be re-processed: about half of a star's mass
 E ~ 10⁵⁴ erg (half a solar mass)
- Super-Eddington mass fallback rate expected at peak to process that amount of energy

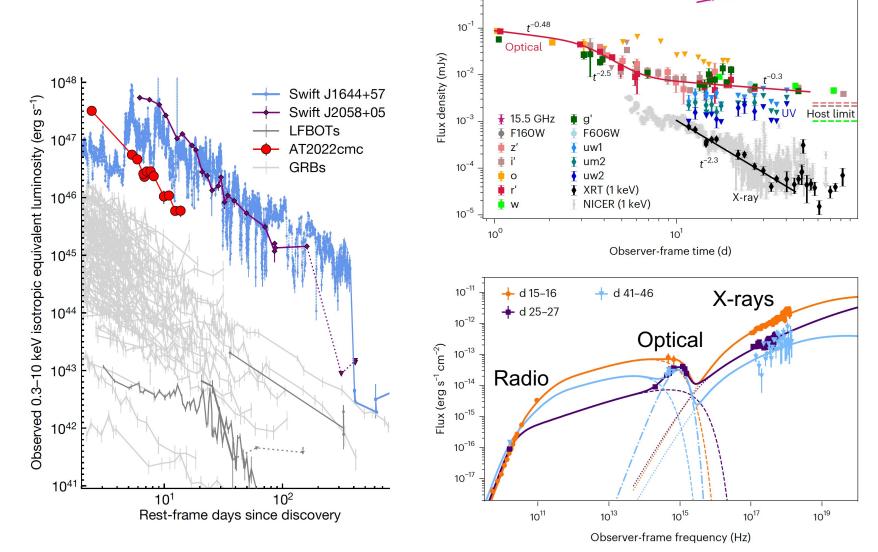
TDE observations (general)


van Velzen et al, Astrophys. J. 908 (2021) 1, 4; Alexander, van Velzen, Horesh, Zauderer, Space Sci. Rev. 216 (2020) 5, 81

- Optical-UV (blackbody): Mass fallback rate typically exhibits a peak and then a ~ t^{-5/3} dropoff over a few hundred days
- X-rays:

Only observed in rare cases (here about 4 out of 17). X-ray properties very different

• Radio:


Interesting signals in about 1/3 of all cases. Evolving radio signals interpreted as outflow or jet

Jetted TDEs

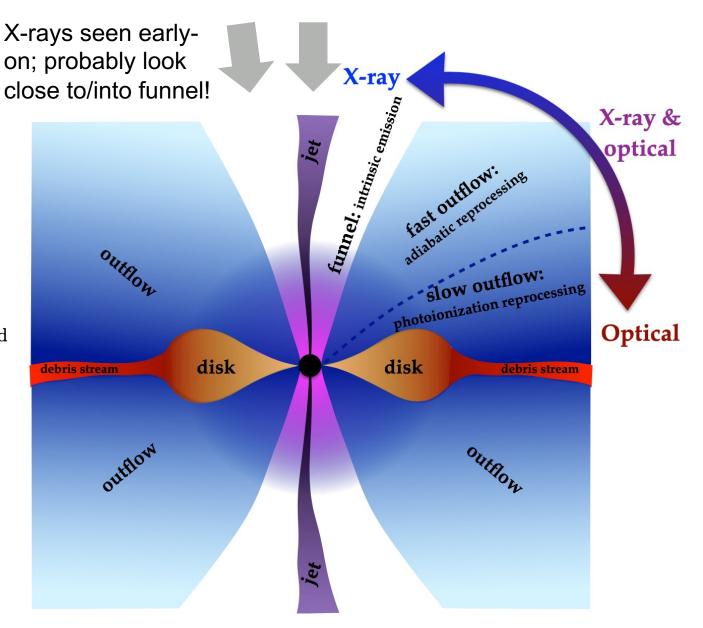
A brand-new example: AT2022cmc

- Extremely luminous
- Non-thermal spectra in X-rays
- Associated with on-axis (or slightly off-axis) relativistic jets
- Γ ~ few to 90 (one model AT2022cmc)
- Typical assumption $\Gamma \sim 10$
- Conclusion: About 1% of all TDEs have relativistic jets (not necessarily pointed in our directions)

10⁰

Andreoni et al, Nature 612 (2022) 7940, 430; Pasham et al, Nature Astron. 7 (2023) 1, 88

Rest-frame time (d)

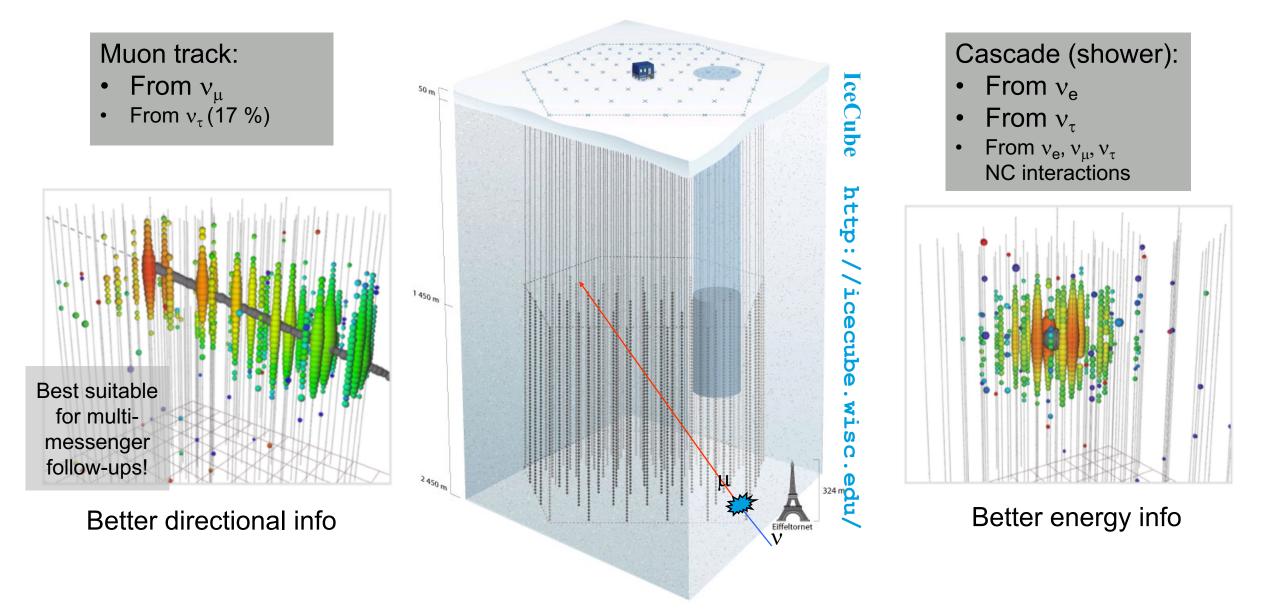

Radio

10.79

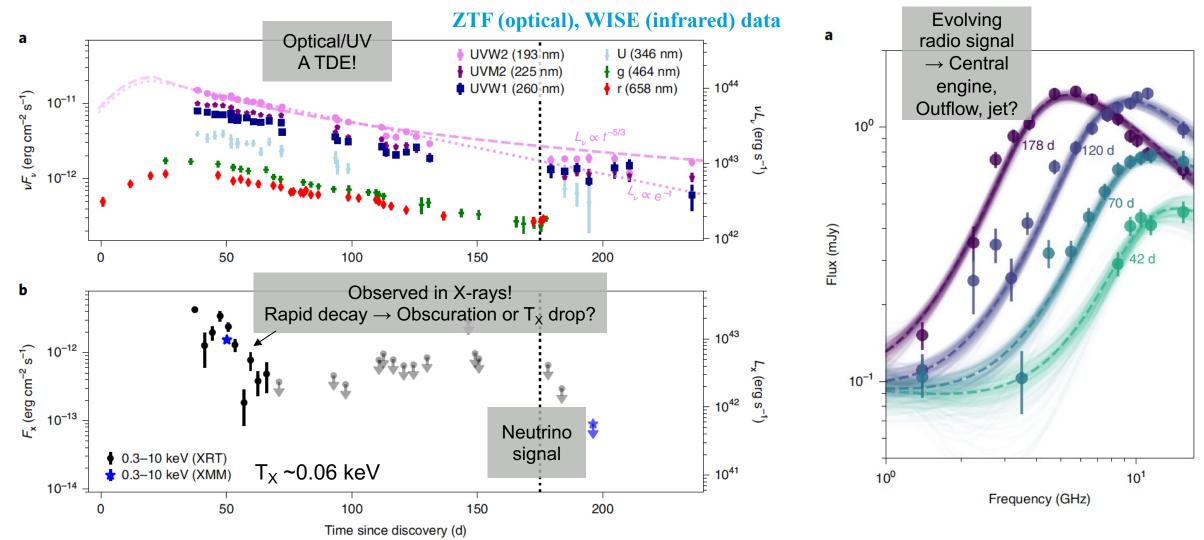
 10^{0}

A TDE unified model

- Supported by MHD simulations; here M_{SMBH} = 5 10⁶ M_{\odot}
- A jet is optional in that model, depending on the SMBH spin
- Observations from model:
 - Average mass accretion rate $\dot{M} \sim 10^2 L_{\rm Edd}$
 - ~ 20% of that into jet
 - ~ 3% into bolometric luminosity
 - ~ 20% into outflow
 - Outflow with v ~ 0.1 c (towards disk) to v ~ 0.5 c (towards jet)

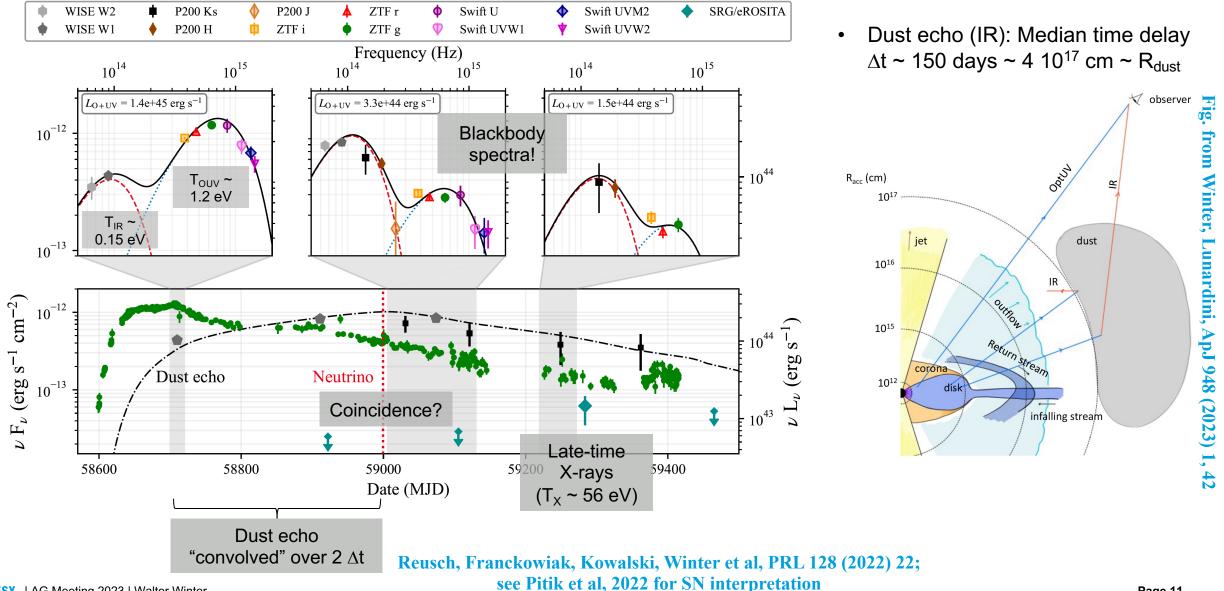


Dai, McKinney, Roth, Ramirez-Ruiz, Coleman Miller, 2018


Neutrinos from TDEs

Observations

Observing TeV-PeV neutrinos with IceCube

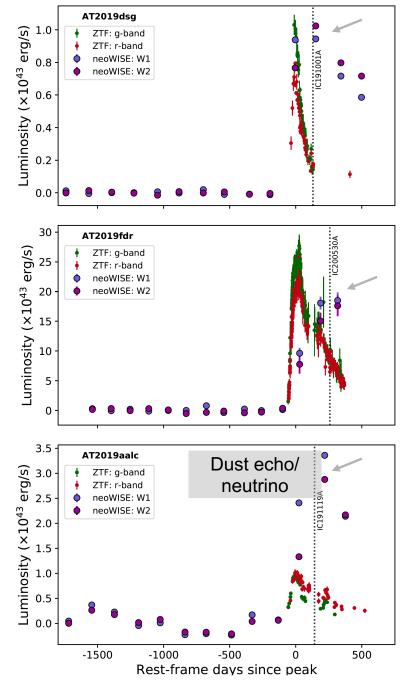

A neutrino from AT2019dsg

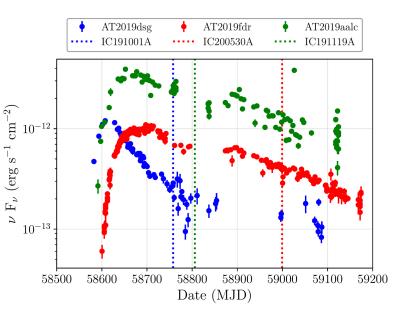
Stein et al, Nature Astronomy 5 (2021) 510;

also interesting: AT2019dsg exhibits late radio re-brighteting two years after discovery; Cendes et al, arXiv:2308.13595

Another neutrino from the TDE candidate AT2019fdr

AT2019aalc


... as third neutrino-TDE association


Analysis

- Selected a sample of 1732 accretion flares with properties similar to AT2019dsg and AT2019fdr (dust echo)
- Found another TDE candidate: AT2019aalc with a similar neutrino time delay
- Overall significance: 3.7σ
 van Velzen et al, arXiv:2111.09391

Caveats

- AT2019aalc also exhibited a late-time X-ray signal
- AT2019fdr and AT2019aalc not uniquely identified as TDEs;
 e.g. Pitik et al, Astrophys. J. 929 (2022) 2, 163 happened in pre-existing AGN; no evolving radio signals

Simeon Reusch @ ECRS 2022

Common features of these three "TDEs":

- Detected in X-rays (but X-ray signals qualitatively different)
- Large BB luminosities
- Strong dust echoes in IR
- Neutrinos all delayed wrt peak by order 100 days (close to dust echo peak)

Interpretation

Possible particle acceleration sites

① Jets (on-axis, off-axis, choked)

Wang et al, 2011; Wang&Liu 2016; Dai&Fang, 2016; Lunardini&Winter, 2017; Senno et al 2017; Winter, Lunardini, 2020; Liu, Xi, Wang, 2020; Zheng, Liu, Wang, 2022; Mukhopadhyay et al, 2023

2 Disk

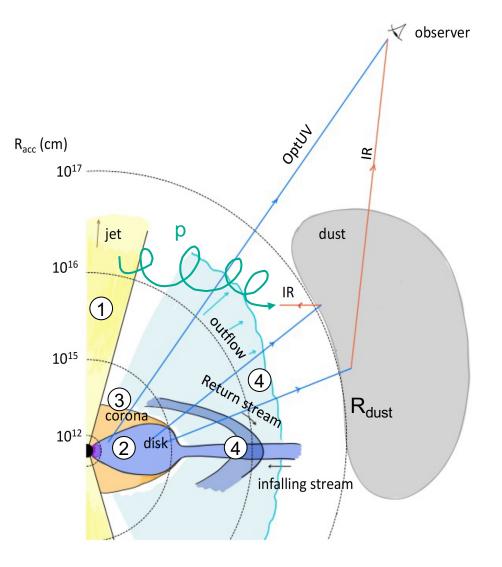
Hayasaki&Yamazaki, 2019

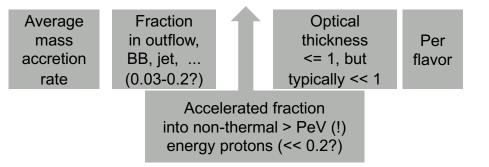
③ Corona Murase et al, 2020

Winds, outflow, stream-stream collisions
 Murase et al, 2020; Fang et al, 2020; Wu et al, 2021

Based on the experimental evidence, it is difficult to establish a particular particle accelerator!

However: probably the accelerator is "TDE-particular" (otherwise other sources would outshine the TDE neutrino flux)




Fig: Winter, Lunardini, ApJ 948 (2023) 1, 42

The energetics challenge

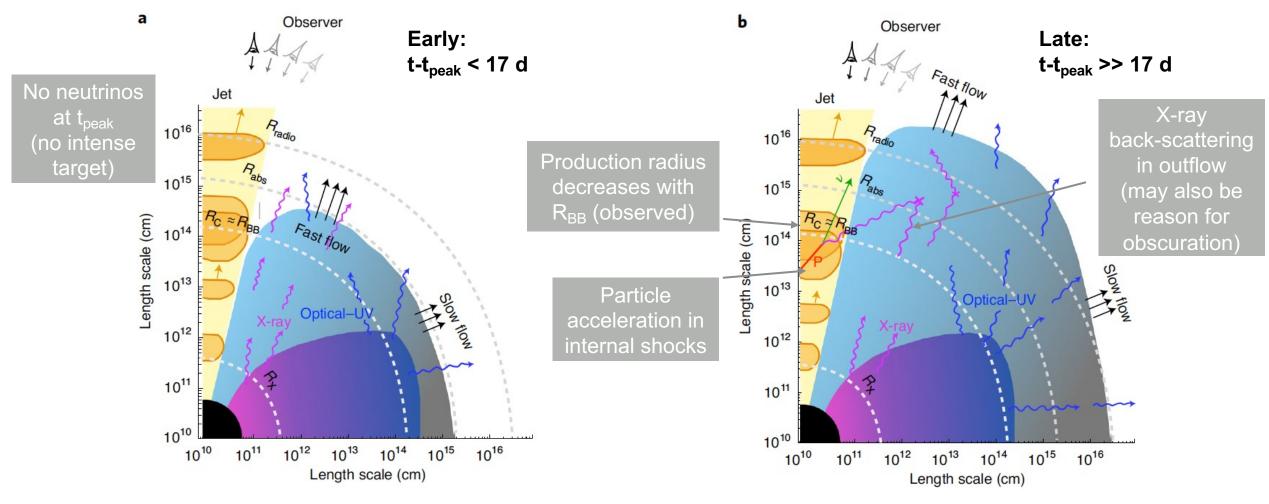
Example: AT2019dsg (similar arguments apply to others)

 Upper limit for average neutrino luminosity (4π solid angle emission, for pp similar):

 $L_{\nu} \sim 25 \ L_{edd} \quad x \quad f_{comp} \quad x \quad \epsilon_{acc} \quad x \quad \tau_{p\gamma} \quad x \quad 1/8 \quad \textbf{<~ 0.1 } \ L_{edd}$

Estimates for SMBH mass

M _{SMBH} /M _☉	Reference
~ 2 10 ⁷	McConnel, Ma, 2012
3 10 ⁵ 10 ⁷	Wevers et al, 2019 (conservative)
1.2-1.4 10 ⁶	Ryu, Krolik, Piran, 2020
2.2-8.6 10 ⁶	Cannizzaro et al, 2021


- Yields $E_v \sim 200$ days x 0.1 $L_{edd} \sim 2 \ 10^{50} \text{ erg} (M_{SMBH}/10^6 M_{\odot})$ Corresponds to 0.2 neutrino events for $M_{SMBH} \sim 10^6 M_{\odot}$ e.g. Fiorillo, van Vliet, Morisi, Winter, JCAP 07 (2021) 028
- Conclusion:

<u>either</u> $M_{SMBH} >> 10^6 M_{\odot}$ and super-efficient energy conversion (mass accretion into non-thermal protons), or the outflow must be collimated with $\theta << 1$ such that $L_v \rightarrow L_v / \theta^2$. Relativistic jet?

• **However:** small neutrino rate perhaps expected from Eddington bias (many such faint events?), non-observation of electromagnetic cascade?

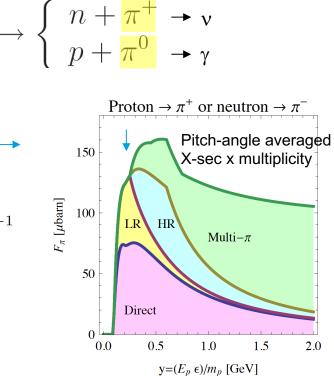
Example: A jetted concordance scenario for AT2019dsg

... based on Dai et al TDE unified model. Addresses energetics issue, but radio observations disfavor a jet

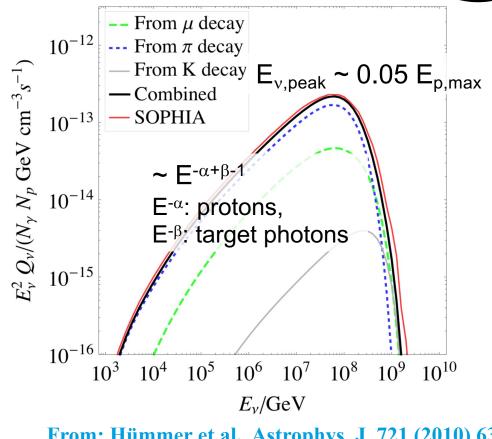
Winter, Lunardini, Nature Astronomy 5 (2021) 472; see also Liu, Xi, Wang, 2020 for an off-axis jet; Zheng, Liu, Wang, 2022, Mukhopadhyay et al, 2023 for choked jets

Neutrinos from $p\gamma$ interactions ... and the multi-messenger connection

- Neutrino peak determined by maximal cosmic ray energy [conditions apply: for target photons steeper (softer) than ε^{-1} (and low enough ε_{min})]
- Interaction with target photons (Δ-resonance approximation):


$$p + \gamma \rightarrow \Delta^+ -$$

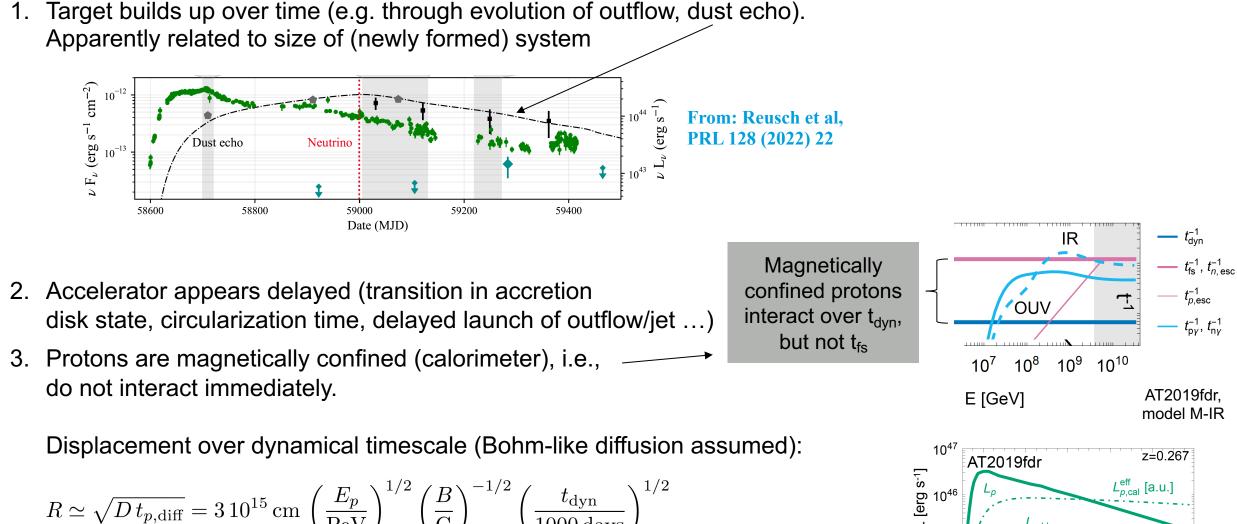
 E_{γ} [keV] ~ 0.01 Γ^2/E_{ν} [PeV] **X-rays interesting!** (computed for Δ-res, yellow) \rightarrow


Thermal target, all processes: $E_{p,\max} \gtrsim 20 E_{\nu} \simeq 160 \operatorname{PeV} \left(\frac{T}{\mathrm{eV}}\right)^{-1}$

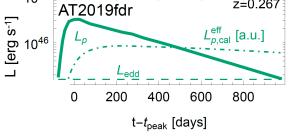
• Photons from pion decay: $\pi^0 \rightarrow \gamma + \gamma$

Injected at $E_{\gamma,peak} \sim 0.1 E_{p,max}$ **TeV–PeV energies interesting!** (but: EM cascade in source!)

Neutrino spectrum (example)

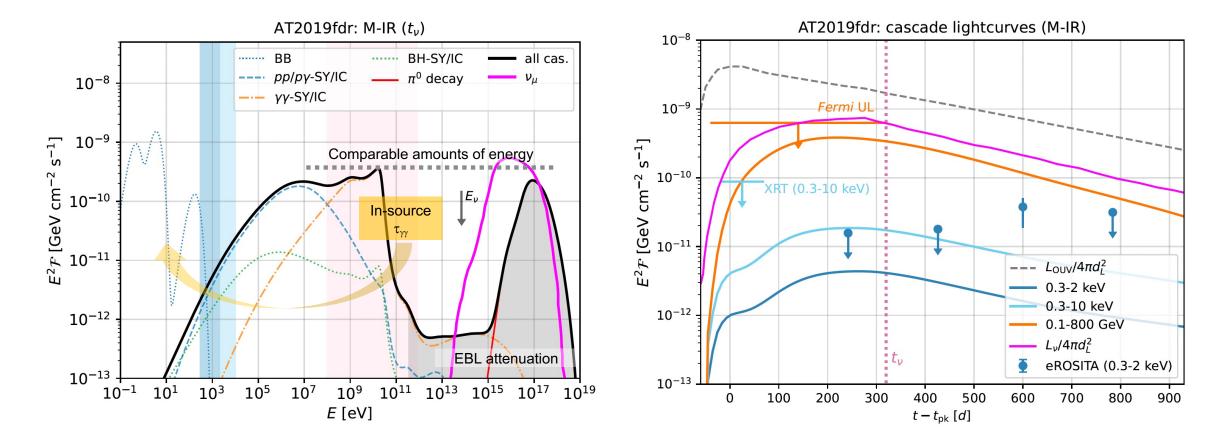

From: Hümmer et al, Astrophys. J. 721 (2010) 630; for a more complete view of possible cases, see Fiorillo et al, JCAP 07 (2021) 028

Possible target photons and required proton energies


	AT2019dsg	${ m AT2019}$ fdr	${ m AT2019}$ aalc	Required target photon
Overall parameters				temperature (pγ):
Redshift z	0.051 (1)	0.267(2)	0.036(3)	$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}^{-1}$
$t_{\rm peak} \ ({\rm MJD})$	58603 (4)	$58675 (2)^{\mathrm{a}}$	58658~(3)	$T \simeq 80 \mathrm{eV} \left(\frac{E_{\nu}}{100 \mathrm{TeV}}\right)^{-1}$
SMBH mass $M [M_{\odot}]$	5.010^6 (3)	$1.310^7~(3)$	$1.610^7~(3)$	
Neutrino observations	·			Translates into:
Name (includes t_{ν})	IC191001A (5)	IC200530A (6)	IC191119A (7)	
$t_{\nu} - t_{\rm peak}$ [days]	154	324	148	$E_{p,\max} \gtrsim 20 E_{\nu} \simeq 160 \mathrm{PeV}\left(\frac{T}{\mathrm{eV}}\right)$
E_{ν} [TeV]	217 (5)	82~(6)	176~(7)	$\int e^{-p,\max} \sim e^{-p} = e^{-p} = e^{-p} + e^{-p}$
N_{ν} (expected, GFU)	0.008-0.76 (1)	0.007 – 0.13 (2)	not available	
Black body (OUV)				1
$T_{\rm BB}$ [eV] at $t_{\rm peak}$	3.4 (1)	1.2(2)	0.9 [Sec. 2.5] –	E _{p,max} > 100 PeV
$L_{\rm BB}^{\rm bol}$ (min.) $\left[\frac{\rm erg}{\rm s}\right]$ at $t_{\rm peak}$	2.810^{44} (Sec. 2.5)	1.410^{45} (Sec. 2.5)	2.710^{44} (Sec. 2.5)	
BB evolution from	(1)	(2)	(3)	
X-rays (X)				1
$T_{\rm X} [{\rm eV}]$	72 (1)	56(2,3)	172 (3)	E _{p,max} > 2 PeV
$L_{\rm X}^{\rm bol} \left[\frac{\rm erg}{\rm s} \right] @ t - t_{\rm peak}$	$6.210^{43} @ 17 d (1)$	6.410^{43} @ $609\mathrm{d}$ (2)	1.610^{42} @ 495 d (3)	p,max
Dust echo (IR)				1
$T_{\rm IR} [{\rm eV}]$	0.16 (Sec. 2.5)	0.15(2)	0.16 (Sec. 2.5) –	E _{p,max} > 1 EeV. UHECRs ?
Time delay Δt [d]	239 (Sec. 2.5)	155 (Sec. 2.5)	78 (Sec. 2.5)	
$L_{\rm IR}^{\rm bol} \left[\frac{{\rm erg}}{{\rm s}} \right] @ t - t_{\rm peak}$	$2.8 10^{43} @ 431 d (Sec. 2.5)$	5.210^{44} @ 277 d (Sec. 2.5)	1.110^{44} @ 123 d (Sec. 2.5)	
	Winter, Lunardini, ApJ 9	48 (2023) 1, 42		 E_{p,max} (related to efficiency of accelerator) controls the available

photon targets!

Origin of neutrino time delay?

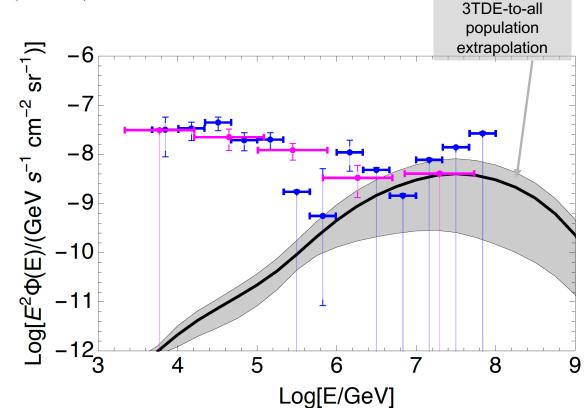

$$R \simeq \sqrt{D t_{p,\text{diff}}} = 3 \, 10^{15} \, \text{cm} \, \left(\frac{E_p}{\text{PeV}}\right)^{1/2} \left(\frac{B}{\text{G}}\right)^{-1/2} \left(\frac{t_{\text{dyn}}}{1000 \, \text{days}}\right)^{1/2}$$

Winter, Lunardini, ApJ 948 (2023) 1, 42

An example with high proton energies – dust echo as target

- Gamma-ray and predicted neutrino signals tend to be correlated; here calorimetric system
- Too compact production regions excluded; limits predicted neutrino event rate to 0.01-0.1 events per TDE

Yuan, Winter, 2023 (ApJ accepted); based upon model in Winter, Lunardini, ApJ 948 (2023) 1, 42


Expected diffuse neutrino flux

• Computation of diffuse neutrino flux:

$$\Phi_{\alpha}(E) = \frac{\eta c}{4\pi H_0} \int_{M_{\min}}^{M_{\max}} dM \int_0^{z_{\max}} dz \ \frac{\dot{\rho}(z, M)Q_{\alpha}(E(1+z), M)}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}}$$

 η : Fraction of neutrino-emitting TDEs

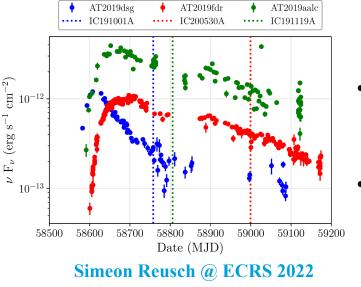
- Might describe diffuse neutrino flux at the highest energies (i.e., only fraction of total neutrino flux)
- Assumption here: η=1% of all TDEs are efficient neutrino emitters
- Roughly consistent with the following hypotheses:
 - There is about one neutrino-TDE association observed per year
 - Neutrino-emitting TDEs and TDEs with strong dust echoes are the same populations
 - The fraction of neutrino-emitting and jetted (1% from Nature 612 (2022) 430) TDEs are the same

Winter, Lunardini, ApJ 948 (2023) 1, 42; model M-IR

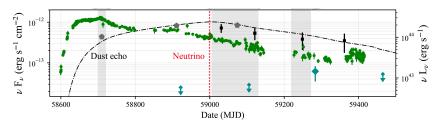
Range from

R_{acc} (cm)

1016


1015

1012


Summary and conclusions

Neutrino-TDE associations

- Three candidates, moderate significance (3.7σ)
- Common features:
 - Detected in X-rays
 - Large BB luminosities
 - Strong dust echoes in IR
 - Neutrinos all delayed wrt peak by order 100 days

Possible UHECR connection if dust echo is target for neutrino production

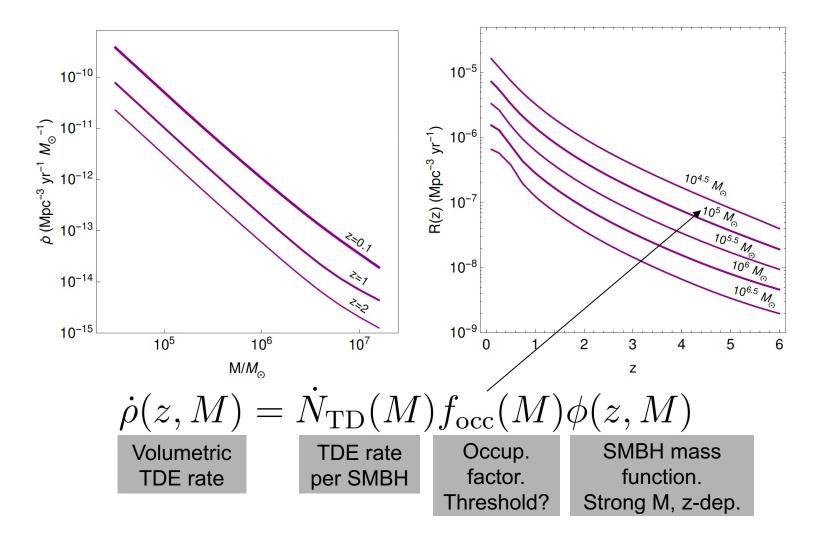
Models for the ν production

- Several possibilities for proton acceleration (disk, corona, jet, outflow, stream-stream collisions etc)
- Energetics is a challenge: either collimated outflow, or very efficient dissipation into non-thermal protons
- Origin of neutrino time delay may be
 - Related to size of system (e.g. outflow, dust echo)
 - Intrinsic from accelerator
 - From calorimetric effects
- UHECR connection?
 - Plausible if dust echo target. Have the sources of the UHECRs been seen here?
 - Could be related to jets (off-axis)
 - Self-consistent picture requires more work (ongoing)

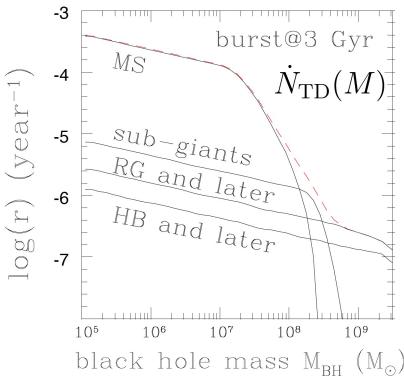
DESY. | AG Meeting 2023 | Walter Winter AT2019fdr, Reusch et al, PRL 128 (2022) 22

🗸 observer

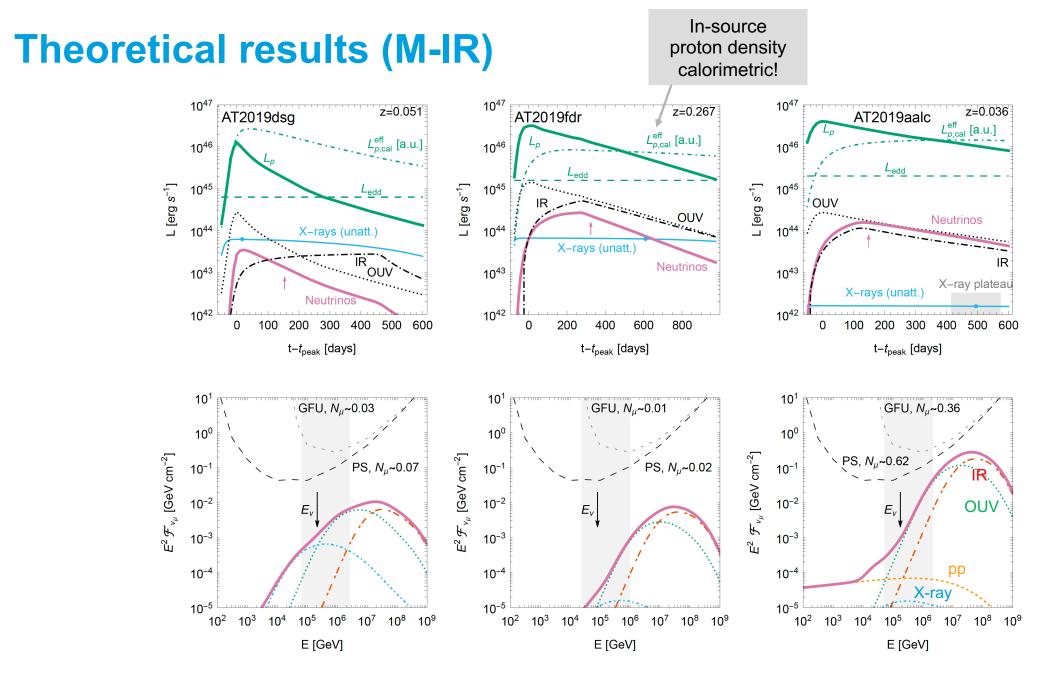
dust


BACKUP

AG Meeting 2023 | Walter Winter

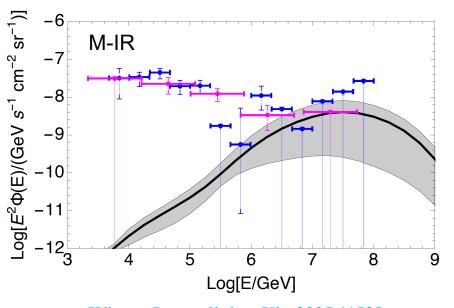

Notes on TDE demographics

SMBH evolution


Source evolution

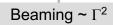
• Dependence on progenitor

Shankar et al, 2009; Konchanek 2016 (Fig. r.h.s.), Stone, Metzger, 2016; Lunardini, Winter, 2017 (Figs. l.h.s)



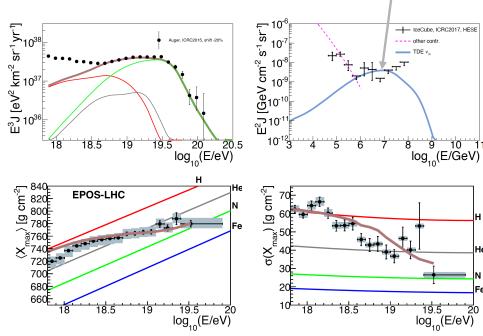
DESY. | AG Meeting 2023 | Walter Winter

Winter, Lunardini, ApJ 948 (2023) 1, 42


UHECR connection. Example: jetted TDEs

Diffuse neutrino flux M-IR (off-axis jets?)

Winter, Lunardini, arXiv:2205.11538


- Estimated UHECR output per TDE ~ 2 10⁵² erg in M-IR model; need local rate of about 5 Gpc⁻³ yr⁻¹
- Assume that off-axis jets accelerator. Rate of jetted TDEs (on-axis) is then R ~ 5 Gpc⁻³ yr⁻¹ / f_B ~ 0.02 Gpc yr⁻¹

Biehl, Boncioli, Lunardini, Winter, Sci. Rep. 8 (2018) 1, 10828; see also Farrar, Piran, 2014; Zhang et al, PRD 96 (2017) 6; Guepin et al, A&A616 (2018) A179

jetted TDEs

From jets

- Limitations:
 - 1. Jetted TDEs are rare R ~ $0.02_{-0.01}^{+0.04}$ Gpc⁻³ yr⁻¹ Nature 612 (2022) 430
 - 2. High L_X , L_v (neutrino multiplet limits!)
 - 3. Injection composition white dwarfs?
- But now: high neutrino-TDE rate observed, lower luminosity (L_{OUV} , L_{v})
- Models actually not so different from the UHECR perspective. Neutrino production in jet perhaps different.