Multi-messenger signals from Tidal Disruption Events

DESY Science Communication Lab

Walter Winter DESY, Zeuthen, Germany

Astroparticle Seminar

NBI Copenhagen, Denmark February 13, 2023

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Contents

- Introduction
- The electromagnetic picture of TDEs
- Neutrinos from TDEs (observations)
- Theoretical modeling (neutrinos)
- UHECRs from TDEs?
- Summary

Introduction

Tidal Disuption Events – the electromagnetic picture

How to disrupt a star 101

Gravity

 Force on a mass element in the star (by gravitation) ~ force exerted by the SMBH at distance (tidal radius)

$$r_t = \left(\frac{2M}{m}\right)^{1/3} R \simeq 8.8 \times 10^{12} \,\mathrm{cm} \,\left(\frac{M}{10^6 \,M_\odot}\right)^{1/3} \frac{R}{R_\odot} \left(\frac{m}{M_\odot}\right)^{-1/3}$$

• Has to be beyond Schwarzschild radius for TDE

$$R_s = \frac{2MG}{c^2} \simeq 3 \times 10^{11} \,\mathrm{cm} \left(\frac{M}{10^6 \,M_\odot}\right)$$

• From the comparison ($r_t > R_s$) and demographics, one obtains (theory) M <~ 2 10⁷ M_{\odot} (lower limit less certain ...)

Hills, 1975; Kochanek, 2016; van Velzen 2017

Energetics

 Measure for the luminosity which can be re-processed from accretion through the SMBH: Eddington luminosity

 $L_{\rm Edd} \simeq 1.3 \ 10^{44} \ {\rm erg/s} \left(M/(10^6 \ M_{\odot}) \right)$

- Energy to be re-processed: about half of a star's mass
 E ~ 10⁵⁴ erg (half a solar mass)
- Super-Eddington mass fallback rate expected at peak to process that amount of energy

Notes on TDE demographics

SMBH evolution

Source evolution

Dependence on progenitor

Shankar et al, 2009; Konchanek 2016 (Fig. r.h.s.), Stone, Metzger, 2016; Lunardini, Winter, 2017 (Figs. l.h.s)

TDE observations (general)

van Velzen et al, Astrophys. J. 908 (2021) 1, 4; Alexander, van Velzen, Horesh, Zauderer, Space Sci. Rev. 216 (2020) 5, 81

- Optical-UV (blackbody): Mass fallback rate typically exhibits a peak and then a ~ t^{-5/3} dropoff over a few hundred days
- X-rays:

Only observed in rare cases (here about 4 out of 17). X-ray properties very different

• Radio:

Interesting signals in about 1/3 of all cases. Evolving radio signals interpreted as outflow or jet

Jetted TDEs

A brand-new example: AT2022cmc

- Extremely luminous
- Non-thermal spectra in X-rays
- Associated with on-axis (or slightly off-axis) relativistic jets
- Γ ~ few to 90 (one model AT2022cmc)
- Typical assumption $\Gamma \sim 10$
- Conclusion: About 1% of all TDEs have relativistic jets (not necessarily pointed in our directions)

10⁰

Andreoni et al, Nature 612 (2022) 7940, 430; Pasham et al, Nature Astron. 7 (2023) 1, 88

Rest-frame time (d)

Radio

10.79

10⁰

A TDE unified model

- Supported by MHD simulations; here M_{SMBH} = 5 10⁶ M_{\odot}
- A jet is optional in that model, depending on the SMBH spin
- Observations from model:
 - Average mass accretion rate $\dot{M} \sim 10^2 L_{\rm Edd}$
 - ~ 20% of that into jet
 - ~ 3% into bolometric luminosity
 - ~ 20% into outflow
 - Outflow with v ~ 0.1 c (towards disk) to v ~ 0.5 c (towards jet)

Dai, McKinney, Roth, Ramirez-Ruiz, Coleman Miller, 2018

Neutrinos from TDEs

Observations

Observing TeV-PeV neutrinos with IceCube

A neutrino from AT2019dsg

Stein et al, Nature Astronomy 5 (2021) 510

Another neutrino from the TDE candidate AT2019fdr

• Dust echo (IR): Median time delay $\Delta t \sim 150 \text{ days} \sim 4 \ 10^{17} \text{ cm} \sim R_{dust}$

1) Winter, Lunardini, Nature Astron. 5 (2021) 5 2)3) Murase et al, ApJ 902 (2020) 2 Page 12

AT2019aalc

... as third neutrino-TDE association

Analysis

- Selected a sample of 1732 accretion flares with properties similar to AT2019dsg and AT2019fdr (dust echo)
- Found another TDE candidate: AT2019aalc with a similar neutrino time delay
- Overall significance: 3.7σ
 van Velzen et al, arXiv:2111.09391

Caveats

- AT2019aalc also exhibited a late-time X-ray signal
- AT2019fdr and AT2019aalc not uniquely identified as TDEs;
 e.g. Pitik et al, Astrophys. J. 929 (2022) 2, 163 happened in pre-existing AGN; no evolving radio signals

Simeon Reusch @ ECRS 2022

Common features of these three "TDEs":

- Detected in X-rays (but X-ray signals qualitatively different)
- Large BB luminosities
- Strong dust echoes in IR
- Neutrinos all delayed wrt peak by order 100 days (close to dust echo peak)

DESY. | NBI Copenhagen | Walter Winter

van Velzen et al, arXiv:2111.09391

Theoretical modeling

Neutrinos from photo-pion production

- Neutrino peak determined by maximal cosmic ray energy [conditions apply: for target photons steeper (softer) than ϵ^{-1} (and low enough ϵ_{min})]
- Interaction with target photons

 (Δ-resonance approximation for C.O.M. energy):

$$p + \gamma \rightarrow \Delta^+ \rightarrow$$

 E_{γ} [keV] ~ 0.01 Γ^2/E_{ν} [PeV] **X-rays interesting!** (computed for Δ-res, yellow) \rightarrow

 $\frac{\pi^0}{\gamma} \rightarrow \gamma + \gamma$

Injected at $E_{\gamma,peak} \sim 0.1 E_{p,max}$ TeV–PeV energies interesting!

(but: electromagnetic cascade in source!)

Neutrino spectrum (example)

for a more complete view of possible cases, see Fiorillo et al, JCAP 07 (2021) 028

Requirements: Energetics

Example: AT2019dsg (similar arguments apply to others)

• Upper limit for average neutrino luminosity $(4\pi \text{ solid angle emission, for pp similar})$:

verage	F	raction			Optic	al	
mass	in	in outflow,			thickness		Per
ccretion	BE	BB, jet,			<= 1, but		flavor
rate	(0.	03-0.2?)			typically << 1		
		Accelerated fraction into non-thermal > PeV (!) energy protons (<< 0.2?)					

• Yields $E_v \sim 200$ days x 0.1 $L_{edd} \sim 2 \ 10^{50}$ erg ($M_{SMBH}/10^6 \ M_{\odot}$) $\rightarrow 0.2$ events for $M_{SMBH} \sim 10^6 \ M_{\odot}$

• Conclusion:

either $M_{SMBH} >> 10^6 M_{\odot}$ and super-efficient energy conversion, <u>or</u> the outflow must be collimated with $\theta << 1$ such that $L_v \rightarrow L_v / \theta^2$

Estimates for SMBH mass						
Reference						
McConnel, Ma, 2012						
Wevers et al, 2019 (conservative)						
Ryu, Krolik, Piran, 2020						
Cannizzaro et al, 2021						

Fiorillo, van Vliet, Morisi, Winter, arXiv:2103.16577

• However: small neutrino rate perhaps expected from Eddington bias, non-observation of electromagn. cascade?

Origin of neutrino time delay?

- 2. Accelerator appears delayed (transition in accretion disk state, circularization time, ...)
- 3. Protons are magnetically confined (calorimeter), i.e., do not interact immediately.

Magnetically confined protons interact over t_{dyn}, but not t_{fs}

Displacement over dynamical timescale (Bohm-like diffusion assumed):

$$R \simeq \sqrt{D t_{p,\text{diff}}} = 3 \, 10^{15} \, \text{cm} \, \left(\frac{E_p}{\text{PeV}}\right)^{1/2} \left(\frac{B}{\text{G}}\right)^{-1/2} \left(\frac{t_{\text{dyn}}}{1000 \,\text{days}}\right)^{1/2}$$

Winter, Lunardini, arXiv:2205.11538

Example: A jetted concordance scenario for AT2019dsg

... based on Dai et al TDE unified model. Addresses energetics issue!

Winter, Lunardini, Nature Astronomy 5 (2021) 472;

see also Liu, Xi, Wang, 2020 for an off-axis jet and Zheng, Liu, Wang, 2022 for choked jets

Results (AT2019dsg)

Pros:

- Best option to satisfy energetics requirement
- Direct connection with X-ray signal
- Neutrino time delay though delayed isotropized X-rays, decreasing production radius
- Neutrino energy well re-produced

Cons:

- Evidence for a relativistic jet in AT2019dsg heavily disputed
- No interesting (evolving) radio signals for AT2019fdr, AT2019aalc (no direct evidence for outflow or jet)

Caveats:

- Jets in TDEs exist in about 1% of all cases Nature 612 (2022) 7940
- Could off-axis jets act as proton accelerators which are then magnetically confined?

Winter, Lunardini, Nature Astronomy 5 (2021) 472

(black/thick purple: follow data; red curve: computational result; others: model ingredients)

Quasi-isotropic emission models

Examples M-X and M-IR

- Assume independent acceleration zone (e.g. off-axis jet, outflow, colliding streams)
- Protons isotropize in magnetic fields in a "spherical cow" production region of radius R (lose memory of initial direction)
- Production region acts as a calorimeter (protons interact efficiently over lifetime of system, but freestreaming optical thickness is low), e.g.

$$\begin{split} \tau_{p\gamma}^{\rm fs} &\equiv \frac{t_{\rm fs}}{t_{p\gamma}} \simeq 0.06 \, \left(\frac{L_X}{10^{44} \, {\rm erg \, s^{-1}}}\right) \left(\frac{T_X}{100 \, {\rm eV}}\right)^{-1} \left(\frac{R}{5 \, 10^{15} \, {\rm cm}}\right)^{-1} \,, \\ \tau_{p\gamma}^{\rm cal} &\equiv \frac{t_{\rm dyn}}{t_{p\gamma}} \simeq 18 \, \left(\frac{L_X}{10^{44} \, {\rm erg \, s^{-1}}}\right) \left(\frac{T_X}{100 \, {\rm eV}}\right)^{-1} \left(\frac{R}{5 \, 10^{15} \, {\rm cm}}\right)^{-2} \left(\frac{t_{\rm dyn}}{600 \, {\rm days}}\right) \end{split}$$

 Target photons could be X-rays, OUV or IR photons (next slide); possible interactions with protons from an outflow included

Winter, Lunardini, arXiv:2205.11538

Possible target photons and required proton energies

	AT2019dsg	${ m AT2019}$ fdr	$\operatorname{AT2019aalc}$	Required target photon	
Overall parameters				temperature (py):	
Redshift z	0.051 (1)	0.267(2)	0.036 (3)	$\begin{pmatrix} E_{\mu} \end{pmatrix}^{-1}$	
$t_{\rm peak} \ ({\rm MJD})$	58603(4)	$58675 (2)^{\mathrm{a}}$	58658(3)	$T \simeq 80 \mathrm{eV} \left(\frac{-\nu}{100 \mathrm{TeV}} \right)$	
SMBH mass $M [M_{\odot}]$	5.010^6 (3)	$1.310^7~(3)$	1.610^7 (3)		
Neutrino observations				Translates into:	
Name (includes t_{ν})	IC191001A (5)	IC200530A (6)	IC191119A (7)	······	
$t_{\nu} - t_{\text{peak}} \text{ [days]}$	154	324	148	$E_{\rm mmax} \geq 20 E_{\rm m} \sim 160 {\rm PeV}\left(\frac{T}{T}\right)$	
E_{ν} [TeV]	217(5)	82(6)	176 (7)	$E_{p,\max} \sim 20 E_{p} = 100101 \text{ (eV)}$	
N_{ν} (expected, GFU)	0.008 – 0.76 (1)	0.007 – 0.13 (2)	not available		
Black body (OUV)					
$T_{\rm BB} \ [eV]$ at $t_{\rm peak}$	3.4 (1)	1.2(2)	0.9 [Sec. 2.5]	► E _{n max} > 100 PeV	
$L_{\rm BB}^{\rm bol}$ (min.) $\left[\frac{\rm erg}{\rm s}\right]$ at $t_{\rm peak}$	2.810^{44} (Sec. 2.5)	1.410^{45} (Sec. 2.5)	2.710^{44} (Sec. 2.5)	-p,max	
BB evolution from	(1)	(2)	(3)		
X-rays (X)					
$T_{\rm X} [{\rm eV}]$	72 (1)	56(2,3)	172 (3)	► E _{n max} > 2 PeV	
$L_{\rm X}^{\rm bol} \left[\frac{{\rm erg}}{{\rm s}} \right] @ t - t_{\rm peak}$	6.210^{43} @ 17 d (1)	6.410^{43} @ $609\mathrm{d}$ (2)	1.610^{42} @ 495 d (3)	p,max	
Dust echo (IR)					
$T_{\rm IR} [eV]$	0.16 (Sec. 2.5)	0.15(2)	0.16 (Sec. 2.5) –	► F> 1 FeV UHECRs?	
Time delay Δt [d]	239 (Sec. 2.5)	155 (Sec. 2.5)	78 (Sec. 2.5)		
$L_{\rm IR}^{\rm bol} \left[\frac{\rm erg}{\rm s} \right] @ t - t_{\rm peak}$	$2.8 10^{43} @ 431 d (Sec. 2.5)$	5.210^{44} @ 277 d (Sec. 2.5)	$1.110^{44} @ 123 d (Sec. 2.5)$		
<u>⊢</u>	Winter Lunardini arXiv	v·2205 11538		E _{p,max} controls the available photon targets!	

Winter, Lunardini, arXiv:2205.11538

Theoretical interpretation of neutrino-dust echo connection

Interpretation/hypothesis

- Neutrino arrival seems to be correlated with dust echo
- What if ... the dust echo itself (IR) is the target for cosmic ray interactions?
- Re-call that (from pγ interactions): E_p > 1.6 EeV (T_{IR}/0.1 eV)⁻¹ (for nuclei: rigidity R > 1.6 EV)
- Compatible with UHECR fits, e.g. R_{max} ~ 1.4-3.5 EV. Coincidence? Heinze et al, ApJ 873 (2019) 1, 88
- Points towards interactions of UHECRs

The direction connection between the neutrino production (incl. time delay) and the dust echo could be a **smoking gun signature for the acceleration of UHECRs** in TDEs

Dust model, geometry

- A fraction of the emitted bolometric luminosity is re-processed into the IR
- IR target averaged over the geometry

Proton acceleration and energetics

- Protons are injected with an E⁻² spectrum and $E_{p,max}$ =5 EeV
- B ~ 0.1 G, protons are magnetically confined at lower energies over the TDE duration; isotropization!
- Proton injection follows mass accretion

Cons:

- High dissipation efficiency required
 (> 10% of mass accretion into non-thermal protons)
- Neutrino peak energies too high? <u>But:</u> Some hint for hard spectra from recent TDE stacking analysis? Jannis Neckar @ TeVPA 2022

Neutrino production

• From proton interactions with OUV and IR, different time-dependencies:

Dashed: neutrino production time Solid: Peak time of TDE

Winter, Lunardini, arXiv:2205.11538 (model M-IR)

Winter, Lunardini, arXiv:2205.11538v1 (model M-IR)

Chengchao Yuan

Electromagnetic cascade (in source)

Fully time-dependent computation with AM³. Example: AT2019dsg: no strong constraints for model M-IR

Yuan, Winter, in preparation

Expected diffuse neutrino flux

• Computation of diffuse neutrino flux:

$$\Phi_{\alpha}(E) = \frac{\eta c}{4\pi H_0} \int_{M_{\min}}^{M_{\max}} dM \int_0^{z_{\max}} dz \ \frac{\dot{\rho}(z, M)Q_{\alpha}(E(1+z), M)}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}}$$

 η : Fraction of neutrino-emitting TDEs

- Might describe diffuse neutrino flux at the highest energies (i.e., only fraction of total neutrino flux)
- Assumption here: η=1% of all TDEs are efficient neutrino emitters
- Roughly consistent with the following hypotheses:
 - There is about one neutrino-TDE association observed per year
 - Neutrino-emitting TDEs and TDEs with strong dust echoes are the same populations
 - The fraction of neutrino-emitting and jetted (1% from Nature 612 (2022) 430) TDEs are the same

Range from

UHECR connection. Example: jetted TDEs

Diffuse neutrino flux M-IR (off-axis jets?)

Winter, Lunardini, arXiv:2205.11538

- Estimated UHECR output per TDE ~ 2 10⁵² erg in M-IR model; need local rate of about 5 Gpc⁻³ yr⁻¹
- Assume that off-axis jets accelerator. Rate of jetted TDEs (on-axis) is then R ~ 5 Gpc yr⁻¹ / f_B ~ 0.02 Gpc yr⁻¹

Beaming ~ Γ^2

- Limitations:
 - 1. Jetted TDEs are rare R ~ $0.02_{-0.01}^{+0.04}$ Gpc yr⁻¹ Nature 612 (2022) 430
 - 2. High L_X , L_v (neutrino multiplet limits!)
 - 3. Injection composition white dwarfs?
- But now: high neutrino-TDE rate observed, lower luminosity (L_{OUV} , L_{v})
- Models actually not so different from the UHECR perspective. Neutrino production in jet perhaps less efficient.

Hadronic cascade in source

Example: AT2019aalc source-ejected (no propagation effects except for adiabatic cooling), parameters at face value

- Power law injection (E⁻²) of pure ¹⁴N up to E_{max}=7 x 5 EeV
- UHECR escape mechanisms:
 - Direct/diffusion in Bohmregime, neutron escape (thin solid)
 - Advective (dashed), v=0.5c (outflow)
 - Instantaneous release after t_{dyn} (dotted)
- Probably requires some re-optimization of parameters (R, E_{max})

Winter et al, in preparation

Page 27

Alternative models

Quasi-isotropic model with lower E_{p,max.} Example: AT2019fdr

Winter, Lunardini, arXiv:2205.11538 (models M-X, M-OUV)

Specific implementations of accelerator?

• Jets

Wang et al, 2011; Wang&Liu 2016; Dai&Fang, 2016; Lunardini&Winter, 2017; Senno et al 2017

- Disk Hayasaki&Yamazaki, 2019
- Corona
 Murase et al, 2020
- Winds, outflow Murase et al, 2020; Fang et al, 2020; Wu et al, 2021

Murase et al, arXiv:2005.08937 (AT2019dsg)

R_{acc} (cm)

1016

1015

1012

Summary and conclusions

Neutrino-TDE associations

- Three candidates, moderate significance (3.7σ)
- Common features:
 - Detected in X-rays
 - Large BB luminosities
 - Strong dust echoes in IR
 - Neutrinos all delayed wrt peak by order 100 days

Possible UHECR connection if dust echo is target for neutrino production

Models for the ν production

- Several possibilities for proton acceleration (disk, corona, jet, outflow, stream-stream collisions etc)
- Energetics is a challenge: either collimated outflow, or very efficient dissipation into non-thermal protons
- Origin of neutrino time delay may be
 - Related to size of system (e.g. outflow, dust echo)
 - Intrinsic from accelerator
 - From calorimetric effects
- UHECR connection
 - Plausible if dust echo target
 - Could be related to jets (off-axis)
 - Self-consistent picture requires more work

🗸 observer

dust