PHOTONS:High Energy Photon Flux Production and Propagation

LECTURE PLAN:

1) COSMIC RAYS- proton interactions with photons, composition, nuclei interactions with photons, different photon targets

2) NEUTRINOS- presence of GZK-cutoff, photo-pion production mechanism, interaction rate, cosmic ray spectra, source distribution

3) PHOTONS- photon flux production, photon flux attenuation, competition of rates, e/γ cascades
4) MULTIMESSENGER
APPROACH

What <u>Percentage</u> of Cosmic Rays are Expected to be Photons? (>10¹⁸eV)

Dan Hooper

Subir Sarkar

Paolo Coppi

Aims

- 1) High Energy photon production through cosmic ray interactions
- 2) Difficulties for a high energy photon in the Universe
- 3) A comparison of proton and photon propagation through extragalactic space
- 4) The photon/proton ratio expected at Earth
- 5) What energy does the electron get?

6) What happens to the electron energy?

Andrew Taylor

EM Showers

1) Photon Production

Why any Cosmic Rays should be Photons?

<u>Charged Pion production interaction with CMB γ </u>

Why any Cosmic Rays should be Photons?

<u>Neutral Pion production interaction with CMB γ </u>

Why any Cosmic Rays should be Photons?

<u>Neutral Pion production interaction with CMB γ </u>

2) The Struggles of the Photon

Why aren't most Cosmic Rays Photons above 10^{19.6}eV?

Uncertainties in the Radio Background

Uncertainties in the Radio Background

3) Photon and Proton Attenuation Rates

Photon (Cosmic Ray)- Photon (CMB) Interaction Lengths

Proton (Cosmic Ray)- Photon (CMB) Loss Lengths

A Comparison of the Photon and Proton Loss Lengths

4) The Photon/Proton Ratio at Earth

The Photon/Proton Loss Length Ratio

Assuming.....

2) A single pair production interaction occurs **only** (synchrotron losses dominate electron cooling)

3) A uniform distribution of the cosmic ray sources locally (in the < 300 Mpc region)

The Photon Flux

from more distant shells

The Photon Fraction

5) What energy does the electron get?

Pair Production Physics

Pair Production Physics (2)

But, boosting back from the center-of-mass frame to lab frame, one of the electron's tends to take nearly all the energy.

(the squared center-of-mass energy of the collision)

$$E_{e} = \Gamma \left(1 + \beta \right) E_{e}^{cm} = \Gamma \sqrt{s}$$

 $s = \frac{E_{\gamma} E_{\gamma}^{bg}}{(m c^2)^2}$

$$- E_e^{cm} = \frac{\sqrt{2}}{2}$$

$$E_e = \Gamma (1 - \beta) E_e^{cm} = \frac{\sqrt{s}}{2\Gamma}$$

ck-Institut hphysik

Pair Production Physics (2)

But, boosting back from the center-of-mass frame to lab frame, one of the electron's tends to take nearly all the energy.

Let,

(the squared center-of-mass energy of the collision)

$$E_e = \Gamma \left(1 + \beta \right) E_e^{cm} = \Gamma \sqrt{s}$$

 $s = \frac{E_{\gamma} E_{\gamma}^{bg}}{(m \ c^2)^2}$

$$\Gamma \approx \frac{E_{\gamma}}{\sqrt{s}}$$

$$E_{e} = \Gamma (1 - \beta) E_{e}^{cm} = \frac{\sqrt{s}}{2\Gamma}$$

Pair Production Physics (3)

At large center-of-mass energies ("s"), one of the electrons produced via pair production carries most of the energy

6) What happens to the electron energy?

What Happens to the Electron Energy?

What Happens to the Electron Energy?

What Happens to the Electron Energy?

2 options for electron interactions:

Max-Rlanck-Institut für Kernphysik

Competition of Processes

Both interactions are described by similar physics:

energy density of
scattering field
If Thomson scattering
$$\blacktriangleright \frac{dE}{dt} = \frac{4}{3} \sigma_T \Gamma^2 U$$

Since $U_{\gamma}^{CMB} = 0.25 \text{ eV cm}^{-3}$ $U_B = 10^{-8} \text{ eV cm}^{-3}$

Naively IC should win!but is the scattering in the **Thomson** regime?

Thomson Regime

For **Thomson scattering**, assumption is that the photon in the electron's frame has it's momentum reversed- ie. it's the center-of-mass frame!

Applies when,

$$\Gamma E_{\gamma}^{bg} < m_e c^2$$

Thompson scattering

(underlying assumption)

• e⁻
$$\cap$$
 • • e⁻ \cap (in electron rest-frame)
 $E_{\gamma} = \frac{4}{3}\Gamma^{2}E_{\gamma}^{bg}$ And rew Taylor

Synchrotron Photons

Treating magnetic field as a virtual photon field,

$$E_{\gamma}^{bg} = \left(\frac{B}{B_{crit}}\right) m_e c^2$$
, where $B_{crit} \approx 4 \times 10^{13} \,\mathrm{G}$

If, $B = 10^{-10}$ G

$$E_{\gamma}^{bg} = 10^{-18} \,\mathrm{eV}$$

If,
$$E_e = 10^{19} \text{ eV}$$
, $\Gamma = 2 \times 10^{13} \longrightarrow \Gamma E_{\gamma}^{bg} = 2 \times 10^{-6} \text{ eV}$ (Thomson)
Since, $E_{\gamma} = \frac{4}{3} \Gamma^2 E_{\gamma}^{bg}$

The synchrotron
photons get
energy
$$E_{\gamma} = \frac{4}{3} \times 4 \times 10^{26} \times 10^{-18} = 5 \times 10^{6} \text{ eV}$$

Inverse Compton Photons

 $E_{\gamma}^{bg} = 10^{-3} \text{ eV}$ (CMB background)

If,
$$E_e = 10^{19}$$
 eV, $\Gamma = 2 \times 10^{13}$

Then,
$$\Gamma E_{\gamma}^{bg} = 2 \times 10^{10} \text{ eV} \longrightarrow \text{Not Thomson}$$

Hence, our naïve conclusion that IC out-competes synchrotron was wrong

When Thomson Scattering Doesn't Apply- the Klein Kishina regime

When ΓE_{γ}^{bg}

$$E_{\gamma}^{bg} \ge m_e c^2$$

(center of mass frame is **very different** to electron rest frame)

$$b = \frac{4 E_e E_{\gamma}^{bg}}{(m_e c^2)^2}$$

ha

(which physically represents the squared center-of-mass energy in the collision)

Can re-write, $E_{\gamma} = \frac{4}{3} \Gamma^2 E_{\gamma}^{bg}$ **as** $E_{\gamma} = \frac{1}{3} b E_e$

When Thomson Scattering Doesn't Apply- the Klein Nishina Regime

So the energy exchange is,

$$\frac{E_{\gamma}}{E_e} = \frac{b}{3}$$

Thomson: b < 1

But $\frac{E_{\gamma}}{E_{e}}$ shouldn't become larger than 1....what went wrong?

Klein-Nishina Description

e/γ Cascades

The repetition of **2 processes**:

2) Inverse Compton

$$E_{\gamma} = 10^{19} \text{ eV}, \quad E_{\gamma}^{bg} = 10^{-3} \text{ eV}$$

$$(s = 4x10^{4}, \quad \frac{E_{e}}{E_{\gamma}} \approx 0.99)$$

$$E_{e} = 10^{19} \text{ eV}, \quad E_{\gamma}^{bg} = 10^{-3} \text{ eV}$$

$$(b = 1x10^{5}, \quad \frac{E_{\gamma}}{E_{e}} \approx 0.99)$$

So the high energy particle simply changes from a neutral to charged state and back spending Andrew Taylor

The Spanner in the Works

However, with the radio background with -

$$E_{\gamma}^{bg} = 10^{-8} \text{ eV} \longrightarrow U_{\gamma}^{CRB} = 10^{-8} \text{ eV cm}^{-3}$$

If,
$$E_e = 10^{19} \text{ eV}$$
, $\Gamma = 2 \times 10^{13}$

The Photon Flux- with cascading

Conclusion

- High energy photon production is an inevitable consequence of the GZK cut-off's existence
- The present uncertainty in the radio background and extragalactic magnetic field strengths lead to various possibilities for the propagation of the electromagnetic energy through the system
- If the radio background and extragalactic magnetic field are low, a simple leading particle description with the particle alternating between neutral and charged states may be used
- The radio background provides low energy photons, prematurely putting the cascade into the Thomson regime

The Photon Fraction- data

