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PHOTONS:High Energy 
Photon Flux Production and 

Propagation  
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LECTURE PLAN:

1) COSMIC RAYS- proton interactions with photons, 
composition, nuclei interactions with photons, different 
photon targets

2) NEUTRINOS- presence of GZK-cutoff, photo-pion 
production mechanism, interaction rate, cosmic ray 
spectra, source distribution

3) PHOTONS- photon flux production, photon flux 
attenuation, competition of rates, e/  cascades

4) MULTIMESSENGER 

APPROACH
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What Percentage of Cosmic 
Rays are Expected to be 

Photons? (>1018eV)

Dan Hooper Subir Sarkar Paolo Coppi
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Aims

1) High Energy photon production through cosmic ray 
interactions

2) Difficulties for a high energy photon in the Universe

3) A comparison of proton and photon propagation 
through extragalactic space

4) The photon/proton ratio expected at Earth

5) What energy does the electron get?

6) What happens to the electron energy?
EM Showers
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1) Photon Production
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Why any Cosmic Rays should be  
Photons?

Charged Pion production interaction with CMB 

For Eproton>1019.6 eV

p

γ

n

π+

(photon energy in proton frame)
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Why any Cosmic Rays should be  
Photons?

Neutral Pion production interaction with CMB 

For Eproton>1019.6 eV

p

γ

p

π0

(photon energy in proton frame)

γ
γ

From isospin considerations for the Delta-
resonance decay, neutral pions are twice 
as likely to be produced as charged pions
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Why any Cosmic Rays should be  
Photons?

Neutral Pion production interaction with CMB 

For Eproton>1019.6 eV

p

γ

p

π0

(photon energy in proton frame)

γ
γ

However, close to threshold, where direct 
pion production dominates, charged pion
production is more likely
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2) The Struggles of 
the Photon
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Why aren't most Cosmic Rays 
Photons above 1019.6eV?

γ

γ

(and what happens to 
the electrons energy?)

e+

e-

(photon energy in lab frame- for a GeV photon)
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Uncertainties in the Radio Background

(the spanner in the works)

Radio 
Background

dust

stellar
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Uncertainties in the Radio Background

(the spanner in the works)

n≈400  cm−3

n≈1  cm−3
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3) Photon and Proton 
Attenuation Rates
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Photon (Cosmic Ray)- Photon (CMB) 
Interaction Lengths
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Proton (Cosmic Ray)- Photon (CMB) 
Loss Lengths

R=
m

p
2 c4

2 E 2 ∫0
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d 
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2 ∫0

2 E /m
p
c2

d  '  '
p
 ' K

p (where R is the 
energy loss rate)
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A Comparison of the Photon 
and Proton Loss Lengths
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4) The Photon/Proton Ratio 
at Earth
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The Photon/Proton Loss Length 
Ratio
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Assuming.....

1) A large radio background
(U

B 
= 10-8 eV cm-3)

2) A single pair production interaction occurs only 
(synchrotron losses dominate electron cooling)

3) A uniform distribution of the cosmic ray sources locally 
(in the < 300 Mpc region) 
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The Photon Flux

dip feature in photon fluxes 
from more distant shells
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The Photon Fraction
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5) What energy does the electron 
get?
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γ

γ
e+

e-

Pair Production Physics

γ

e-

e+

γ

In center-of-mass frame, 
electron/positron pair are produced with 
equal energy

Pair Production:



  Andrew 
Taylor

Pair Production Physics (2)
But, boosting back from the center-of-mass frame 
to lab frame, one of the electron's tends to take 
nearly all the energy.

Let, s=
EE 

bg

me c
2


2

(the squared center-of-mass 
energy of the collision)

E e=1E e
cm
=  s

E e=1−E e
cm=

 s
2

γ γ

e+e-

E e
cm=

 s
2
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Pair Production Physics (2)
But, boosting back from the center-of-mass frame 
to lab frame, one of the electron's tends to take 
nearly all the energy.

Let, s=
E E

bg

me c
22

(the squared center-of-mass 
energy of the collision)

E e=1E e
cm
=  s

E e=1−E e
cm=

 s
2

γ γ

≈
E

 s

e+e-
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So,
E e
E 

=
4s−1

4s
f s

Pair Production Physics (3)

At large center-of-mass energies (“s”), one of the 
electrons produced via pair production carries most of 
the energy
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6) What happens to the electron 
energy?
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What Happens to the Electron 
Energy? 

e+

e-

γ

γ γ

γ

γ
γγ

Photon Background

γ

γ γ

γ

γ
γγ

Magnetic Field

U 
CMB

=0.25 eV cm−3 U B=10−8 eV cm−3
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What Happens to the Electron 
Energy? 

e+

e-

γ

γ γ

γ

γ
γγ

Photon Background

γ

γ γ

γ

γ
γγ

Magnetic Field

U 
CMB

=0.25 eV cm−3 U B=10−8 eV cm−3

B=3 x 10−10  G
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What Happens to the Electron 
Energy? 

e-

γ

Photon Background Magnetic Field

Inverse Compton 
Scattering:

e-

γ

Synchrotron:

e-

γ

e-

γ

2 options for electron 
interactions:
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Competition of Processes

Both interactions are described by similar physics:

If Thomson scattering dE
dt

=
4
3
T 

2U

U 
CMB

=0.25 eV cm−3 U B=10−8 eV cm−3Since

Naively IC should win! ....but is the scattering in the 
Thomson regime?

energy density of 
scattering field
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 E 
bg

Thomson Regime

E=
4
3
2E

bg

For Thomson scattering, assumption is that the photon in the 
electron's frame has it's momentum reversed- ie. it's the 
center-of-mass frame!

e-

 E
bg

e-

Thompson scattering

 E
bg
me c

2Applies when,

(in electron rest-frame)

(underlying assumption)
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Synchrotron Photons

E=
4
3


2E

bg

If,

Treating magnetic field as a virtual photon field,

E
bg
= BBcrit me c

2 , where Bcrit≈4x1013 G

If, B=10−10 G

E
bg
=10−18 eV

E e=1019 eV , =2x1013

The synchrotron 
photons get 
energy E=

4
3

x 4 x 1026 x 10−18
=5x106 eV

 E 
bg
=2x10−6  eV (Thomson)

Since,
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Inverse Compton Photons

E
bg
=10−3  eV

 E
bg
=2x1010  eVThen, Not Thomson

Hence, our naïve conclusion that IC out-competes 
synchrotron was wrong

If, E e=1019 eV , =2x1013

(CMB background)
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When Thomson Scattering Doesn't 
Apply- the Klein Kishina regime

 E
bg
≥me c

2

Let, b=
4 E e E 

bg

me c
22

E=
4
3
2E

bgCan re-write,

as E=
1
3
b E e

(which physically represents the squared 
center-of-mass energy in the collision)

When (center of mass frame is very 
different to electron rest frame)
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When Thomson Scattering Doesn't 
Apply- the Klein Nishina Regime

So the energy exchange is,

E

E e
=
b
3

But        shouldn't become larger than 1....what went wrong?

Complete description is actually,

E

E e
=

b
1b

f b

Thomson: b1

E

E e
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Klein-Nishina Description
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e/  Cascades

The repetition of 2 processes:

γ

γ
e+

e-

1) Pair Production

2) Inverse Compton

e- γ e-

γ
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Leading Particle Description

e+e+ e-

5 Mpc 5 Mpc 5 Mpc 5 Mpc

 So the high energy particle simply changes from a 
neutral to charged state and back spending 
roughly equal times in each state.

E=1019  eV, E
bg
=10−3  eV

γ γ
s=4x104 ,

E e
E

≈0.99

e+e+
γ

E e=1019  eV, E
bg
=10−3  eV

b=1x105 ,
E

E e
≈0.99

e- e+e+ e+ (ignore secondary 
particles)

E=1019  eV
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The Spanner in the Works
However, with the radio background with -

E
bg
=10−8  eV U 

CRB
=10−8 eV cm−3

If, E e=1019 eV ,=2x1013

 E 
bg
=2x105  eVThen, ~Thomson

e+e+

e-

e+e+

e+e-

e+e+

e-

e+e-

e+e+

e-

e+e-

new particles cannot be 
ignored- particle 
multiplication headache!
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The Photon Flux- with cascading

no cascading

with cascading
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Conclusion
• High energy photon production is an inevitable 

consequence of the GZK cut-off's existence

• The present uncertainty in the radio background and 
extragalactic magnetic field strengths lead to various 
possibilities for the propagation of the electromagnetic 
energy through the system

• If the radio background and extragalactic magnetic field 
are low, a simple leading particle description with the 
particle alternating between neutral and charged states 
may be used

• The radio background provides low energy photons, 
prematurely putting the cascade into the Thomson regime
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The Photon Fraction- data
Auger data
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