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Flux Production During 

Propagation 

π+ µ+

νµ

e+
νeνµ



  
Andrew 
Taylor

LECTURE PLAN:

1) COSMIC RAYS- proton interactions with photons, 
composition, nuclei interactions with photons, different 
photon targets

2) NEUTRINOS- presence of GZK-cutoff, photo-pion 
production mechanism, interaction rate, cosmic ray 
spectra, source distribution

3) PHOTONS

4) MULTIMESSENGER 

APPROACH
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Aims

1) Presence of GZK cut-off? 

2) Neutrino production mechanisms
 

3) Expected cosmic rays spectrum through Fermi 
acceleration  in the source

4) Cosmogenic neutrino flux calculation  for 
proton cosmic rays

5) What if cosmic rays are heavy nuclei?
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1) Presence of GZK cut-off
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Presence/Absence of GZK cut-off? 
Crucial for UHE Neutrino Flux

The existence of the CMB photons places a limit on the 
distance that high energy ( E

CR
>1020 eV ) cosmic ray protons 

can propagate through space to about 50 Mpc

p p p p p π+ π0 π+ π0π0

wall

(the energy flux is conserved, though
the form of the energy changes)

E p=1020  eV E≈2x1019  eV

50 Mpc

source
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Presence/Absence of GZK Cutoff? 
Crucial for UHE Neutrino Flux

However there are few good candidate sources of high 
energy cosmic ray protons within a sphere of 50 Mpc of us 
(perhaps Cen. A~ 5 Mpc, M87~ 18 Mpc, ....?)

An observation of the GZK cutoff would imply 
cosmologically distant sources whereas failure to see it 
might be an indication of more local sources (more on this 
in the last lecture)
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The GZK Feature

Emax=1020.5 eV
=2.0

Assumptions:

(along with the 
source distribution 
mentioned in the 
previous lecture)

dN
dE

∝E− e
−E
Emax
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Experiments with Highest Statistics Around 
the GZK Cutoff Energy-
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Adjusted Data
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Experiments with Highest Statistics Around 
the GZK Cutoff Energy-
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Is the GZK cut-off Present in the Data?
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Is the GZK cut-off Present in the Data?

Emax=1020.5 eV
=2.0

Assumptions:

(along with the 
source distribution 
mentioned in the 
previous lecture)

dN
dE

∝E− e
−E
Emax
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Just for Curiosity
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Is the GZK cut-off Present in the Data? 
(Auger points shifted up 25%)

Emax=1020.5 eV
=2.0

Assumptions:

(along with the 
source distribution 
mentioned in the 
previous lecture)

dN
dE

∝E− e
−E
Emax
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2) Neutrino Production 
Mechanisms
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p

n
π+

µ+

νµ

e+

νe

νµ

Photo-Pion Neutrino Production

γ

p

e-

νe

note- each ν takes 
~0.05 of initial proton 
energy

note- ν takes 
~0.0005 of initial 
proton energy
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Cosmic Radiation Fields

2.6x10-4

E [eV]
0.12

2.6x10-3

2.6x10-2

2.6x10-1
0.012 0.00121.212

E
2 d

N
/d

E
 [eV

 cm
-3]

CMB

dust

stellar
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Cosmic Background 
Radiation Fields

2.6x10-4

E [eV]
0.12

2.6x10-3

2.6x
10-2

2.6x1
0-1

0.012 0.00121.212

relevant 
radiation field for 
UHE protons 
(>1019 eV)
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Interactions of Cosmic Ray 
Protons with CMB:

Pair Creation-

p+ γ −> p+e++e-,

Photo-Meson Production-

p+ γ −> n+π+/p+π0,

n −> p+e-+ν
e

E
γ
~145MeV

E
γ
~1MeV
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Photo-Pion Production Rate

Assuming the cross-section is 
approximately:

 p =0 ; E−

 p = p  ; E−E

 p =0 ; E

R=
m p

2 c4

2 E p
2 ∫0

∞

d 

n


2 ∫0

2 E p/m pc
2

d  '  '  p  ' K p

where p=0.5 mb , E=300 MeV and=100  MeV
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R=
m p

2 c4

2 E p
2 ∫0

∞

d 

n



2 ∫0

2 E p /m p c2

d  '  ' p  ' K p

≈0.2 p∫E−

2

E

2 d  n 

Photo-Pion Production Rate (2)

n 
BB
=
dn
d 

=
8

hc3


2

e−1

Since,

Or perhaps more clearly 
expressed as,

n=

dn
d 

=400


3

e−1
cm−3

where=
E p

mp c
2

 is the

Lorentz factor of the proton

∝
3

∝e−
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R≈0.2 p ∫E−
2

E

2 d  n

≈ l0
e−x 1−e−x 

−1

where l0  is 5 Mpc

and x=
1020.53 eV
E p

Photo-Pion Production Rate (3)

With, =
1
kT

=
1

10−3  eV



  
Andrew 
Taylor

R≈ p∫E−
2

E

2 d n 

≈ l0
e−x 1−e−x 

−1

where l0  is 5 Mpc

and x=
1020.53 eV
E p

Photo-Pion Production Rate (3)

With, =
1
kT

=
1

10−3  eV
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3) Expected Cosmic-Ray Spectra 
Due to Fermi acceleration in source
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Fermi (First Order) 
Acceleration 

Shock front rest-frame

Strong shock wave propagating 
at supersonic velocity (sound 
speed depends on density and 
temperature)

V=u
1
-u

2

upstreamdownstream

u
1

u
2

injection
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∆E/E=4V/3c (energy gain)

E
1
=(1+4/3)E

0
, where =V/c

E
2
=(1+4/3)E

1
=(1+4/3)2E

0

E
n
=(1+4/3)E

n-1
=(1+4/3)nE

0

So n~1/crossings are needed 
before the particle population is 
significantly altered

∆Ν/N=-4V/3c (advection 
downstream)

N
1
=(1-4/3)N

0

N
2
=(1-4/3)N

1
=(1-4/3)2N

0

N
n
=(1-4/3)N

n-1
=(1-4/3)nN

0

Energy Number

Fermi Acceleration (more)

SNRs have v
sh

~103 km s-1 

so ~10-2
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Energy Number

Fermi Acceleration (more)

~10-2
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Fermi Acceleration (more)

So,

N
 E

=
N 0

E0

1−4/3n

14/3n

≈
N 0

E0

14/3−2n

≈N 0E0 E
−2
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4) Cosmogenic Neutrino flux calculation 
for proton cosmic rays
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Cosmic Ray Source (Temporal) 
Evolution- Quasars

dN/dV = (1+z)3, (z<1.9)
= (1+1.9)3, (1.9<z<2.7)
= (1+1.9)3e(2.7-z)/(2.7), (z>2.7)
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A Cosmological Distribution of 
Sources

 dV = 4  d
d

L
2 dz/((1+z)2H(z))

Distribution of sources in 
a co-moving volume

Distribution of sources 
in redshift
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Cosmogenic Neutrino 
Energetics

Neutrinos from neutron decay

n −> p+e-+ν
e
, E

ν
~10-3E

n

(neutrons generated in photo-pion 
production with isospin change of proton)

π+ −> µ++ν
µ

µ+ −> e++ν
e
+ν

µ

π+ −> ν
µ
+e++ν

e
+ν

µ
, E

ν
~0.25E

π
, (E

π
~0.2E

p
)

Neutrinos from pion decay
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Mean Photon Energy of a 
Blackbody

< E 
BB >=

44
 33

kT≈2.7 kT

< E
BB>=

∫0

∞

d 

dn
d 

∫0

∞

d 

dn
d 

=kT
∫0

∞

dx
x3

e x−1

∫0

∞

dx
x2

e x−1

Since, ∫0

∞

dx
xn

e x−1
=n1n1 (a fun problem to try!)
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<E
γ (CMB)

> ~ 10-3 eV, 

E
γ 
~ 145 MeV (threshold for pion production)

In Center-of-Mass frame-

Γ  ~ 1011, (E
p 
~ 1020 eV)

So for neutrinos from neutron decay-

E
ν 
~ 1016 eV

And for neutrinos from pion decay-

E
ν 
~ 1018 eV

(more) Cosmogenic Neutrino Energetics
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Results from Calculations of 
the Cosmogenic Neutrino FluxEngel,Seckel, and Stanev

(Phys.Rev.D64:093010,2001)

Heights of peaks in 
ratio 1:3

peak neutrino energy flux is 
comparable to 1019 eV proton 
energy flux (~10 eV cm-2 s-1sr-1)
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Results from Calculations of 
the Cosmogenic Neutrino Flux

n=3 (Quasar-like) source 
distribution
α=2 injection spectrum

Unless...Unless...

Nearby sourcesNearby sources

Lorentz Lorentz 
violationviolation
Heavy nuclei Heavy nuclei 
primariesprimaries

Proton primaries

Assumptions...
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Previous Calculation of the 
Cosmogenic Neutrino Flux

n=3 (Quasar-like) source n=3 (Quasar-like) source 
distributiondistribution
αα=2 injection spectrum=2 injection spectrum

Unless...

Nearby sources

Lorentz 
violation
Heavy nuclei 
primaries

Proton primariesProton primaries

Assumptions...Assumptions...
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5) What if cosmic rays are heavy nuclei?
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Neutrino Producing Interactions for 
Nuclei

p

e-

ν e

n

In Nuclei Rest frame-
Eγ ~ 30 MeV
(giant dipole resonance)

<Eγ (CMB+CIB)> ~ 10-2 eV

In Lab frame-

Γ  ~ 109, (EN ~ 1020 eV)
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Requiring Good Fits to the Spectrum

protons-

nuclei-nuclei-

Spectrum 
Plots-

 eVE max=
1022

Z

galactic 
protons

extragalactic 
protons
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Requiring Good Fits to the Spectrum

protons-

nuclei-nuclei-

Spectrum 
Plots-

 eVE max=
1022

Z
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Requiring Good Fits to the Spectrum

protons-protons-

nuclei-

Spectrum 
Plots-

 eVE max=
1022

Z
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...and Good Agreement with X
max

 Data

<ln A> Plots-

proton 
dominated-

iron iron 
dominated-dominated-

highest allowed 

lowest allowed 
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...and Good Agreement with X
max

 Data

<ln A> Plots-

proton 
dominated-

iron iron 
dominated-dominated-
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...and Good Agreement with X
max

 Data

<ln A> Plots-

proton proton 
dominated-dominated-

iron 
dominated-
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The Cosmogenic Neutrino Flux

The high energy (>1017 eV) 
flux quoted as the 
“Guaranteed flux” value

lowest value 
compatible with all 
the data 

Smaller value obtained since 
best agreement found for a 
dominant Fe fraction with 
E

max 
= 1021 eV 
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Conclusions

• The cosmogenic neutrino flux calculation rests on 
several important underlying assumptions- the flux 
typically determined is by no means guaranteed

• An understanding of the true nature of the cut-off 
feature in the Auger cosmic ray spectrum can help 
in this respect

• The presence of cosmic ray nuclei in the arriving 
cosmic ray flux can vastly reduce the cosmogenic 
neutrino flux
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