Astrophysics Lecture Plan

Dr Andrew Taylor

Lecture I: Stars- How they Work
Lecture 2: Stars-Their Evolution
Lecture 3: Planets
Lecture 4: Supernova Remnants
Lecture 5: Black Holes
Lecture 6: Dark Matter

Course Books:

"High Energy Astrophysics" Vol. I+ 2 by Malcolm Longair

Some Important Numbers

Energetics:

$$
\begin{aligned}
& L_{\text {sun }} \sim 10^{26} \mathrm{~W} \text { (Power) } \\
& 0 \mathrm{~K} \sim-273 \mathrm{C} \\
& \mathrm{eV} \sim 10^{-19} \mathrm{~J} \sim 10^{4} \mathrm{~K}
\end{aligned}
$$

Distances:

I AU (Astronomical Unit)- Earth-Sun distance $\sim 10^{11} \mathrm{~m}$
I ly (Light Year)- distance light travels in I year $\sim 10^{16} \mathrm{~m}$
I Parsec $\sim 3 \times 10^{16} \mathrm{~m}$

Parallax in astronomical terms is the apparent shift of an astronomical object due to the motion of the earth it is measured in arcseconds

A parsec is the distance at which the semi-major axis of the Earths orbit would sub-tend an angle of I arcsecond

The Nature of the Sun

The Nature of the Sun

1000 K

3000 K

5000 K

7000 K

9000 K

Measuring the Sun's Spectrum

-Filters - approximate band-pass

- Red $600-700 \mathrm{~nm}$
- Green $520-600 \mathrm{~nm}$
-Blue $450-550 \mathrm{~nm}$

What's the Origin of its Colour?

Solar Radiation Spectrum

Why's It Hot?

Helmholtz

Kelvin

Why's It Hot (~eV in temperature)?

Why's It Hot (~eV in temperature)?

Kelvin-Helmholtz Suggested Timescale

$$
\begin{aligned}
t & \sim \frac{G M_{\odot}^{2}}{L_{\odot} R_{\odot}} \\
& \sim \frac{U_{\odot}}{L_{\odot}}
\end{aligned}
$$

$U_{\odot} \sim 10^{49} \mathrm{erg}$ $L_{\odot} \sim 10^{33} \mathrm{erg} \mathrm{s}^{-1}$
$t \sim 10^{14} \mathrm{~s}$

A problem with Gravitational Collapse Powered Heating

Rutherford

A Spanner in the Works

Uranium decay series

$$
\tau_{1 / 2}\left({ }^{238} U\right)=4 \times 10^{9} \mathrm{yrs}
$$

$$
\tau_{1 / 2}\left({ }^{236} R a\right)=1000 \mathrm{yrs}
$$

Could radioactive decay be powering the sun?

A New Hypothesis

Eddington

Nuclear Heating

Where does the MeV Scale Come From?

We See The Visible Radiation

 (which starts off as γ-rays)$\sim 1 \mathrm{eV}$

$l_{\mathrm{int}} \sim \frac{1}{n_{e} \sigma_{\mathrm{T}}}$
$\sim 1 \mathrm{~cm}$

Can We Ever See This Invisible Radiation?

$\sim 1 \mathrm{MeV}$

Can We Ever See This Invisible Radiation?

(Heavy) Water Tank

$l_{\text {int }} \sim \frac{1}{n_{e} \sigma}$ $\sim 10^{15} \mathrm{~m}$

$$
N(1 \mathrm{yr})=\frac{d N}{d A d t} \times t_{\mathrm{yr}} \times A \times \frac{l}{l_{\mathrm{int}}}
$$

Can We Ever See This Invisible Radiation?

Can We Ever See This Invisible Radiation?

$\sim 1 \mathrm{MeV}$

Yes....but only $\sim 1 / 3$ of the expected number of electron neutrinos are observed!

SNO- Sudbury Neutrino Observatory

m

16 m

Steve Biller

Can We Ever See This Invisible Radiation?

$\sim 1 \mathrm{MeV}$

Lecture Problems

Sitting on the beach at the equator on March 21 st/Sep 21 st (spring + autumn equinoxes), the Sun is overhead at midday. What power from it in photons do I receive at this time?
(see slide 2)

Sitting on the beach at the equator on March 21 st/Sep 21 st (spring + autumn equinoxes), the Sun is overhead at midday. What power does my $15 \mathrm{~m} \times 15 \mathrm{~m} \times 15 \mathrm{~m}$ water tank receive in neutrinos at this time (l brought it on the beach with me!)?

Types of Stars

rooook	Type	Prominent spectral lines	colour	average temp	Examples
	\bigcirc	$\mathrm{He}, \mathrm{H}, \mathrm{O}, \mathrm{N}, \mathrm{C}, \mathrm{Si}$	Blue	45,000 K	Regor
د000k	B	$\mathrm{He}, \mathrm{H}, \mathrm{O}, \mathrm{N}, \mathrm{Fe}, \mathrm{Mg}$	bluish white	30,000 K	Rigel
eoook	A	H , ionised metals	white	12,000 K	Sirius
2000 K	F	$\mathrm{H}, \mathrm{Ca}, \mathrm{Ti}, \mathrm{Fe}$	yellowish white	8,000 K	Procyon
+000k	G	$\mathrm{Ca}, \mathrm{Fe}, \mathrm{Ti}, \mathrm{Mg}, \mathrm{H}$ some molecular bands	yellowish	6,500 K	The Sun
3000k	K	Ca, H, molecular bands	orange	5,000 K	Aldebaran
	M	TiO, Ca, molecular bands	red	3,500 K	Betelgeuse

Stars: Evolution Theory

T<10 000 K

H_{2}

Stars: Evolution Theory

T>10 000 K

Stars: Evolution Theory
 T>I 000000 K

H

Stars: Evolution Theory

T> 10000000 K

Takes ~ 50 Myr to form from the Molecular Cloud

Stars: Evolution Theory

T>10 000000 K

Burns for the next ~ 10 Gyr during this "stable stage" of its life

Stars: Evolution Theory

 $\mathrm{HeO}_{\mathrm{H}}$H

Stars: Evolution Theory

He_{H}

H

Stars: Evolution Theory

- At the point A , the star begins its lifetime on the main sequence. The convective core contains 21% of the mass of the star and nuclear burning takes place within the inner 7% by mass. During the first 5.6×10^{7} years, the star remains at roughly the same location on the H-R diagram, evolving to the point B.
- By the point C , the central hydrogen fuel is exhausted and during the transition from C to D , an isothermal helium core is formed which begins to collapse, accompanied by the rapid expansion of the envelope to form a giant star. During the evolution from C

Hertzprung-Russell Diagram

to D , hydrogen burning continues in a shell about the helium core. At the point D , the star arrives at the Hayashi track and then an outer convection zone is formed in the giant envelope.

- The continuing contraction of the central regions heats up the core until helium burning takes place at E. In the helium burning process, helium is converted into carbon $3^{4} \mathrm{He} \rightarrow{ }^{12}$ C through the rare triple- α process. This is accompanied by an excursion to higher temperatures across the H - R diagram to F .
- Helium burning continues until the central helium abundance is reduced to zero and an isothermal ${ }^{12} \mathrm{C}$ core forms at G . Helium burning continues in a shell about the isothermal C,O core.
- Throughout the stages D to H , hydrogen shell burning continues to larger and larger radii, but at H hydrogen shell burning ends because the temperature in the envelope is too low.
- At K, the star develops a deep outer convection zone and subsequently moves almost vertically up the Hayashi track.

Star Formation

Star Formation: Observational Evidence

Star Factories: M42 GMC in Orion

The Orion nebula is an intense region of Star Formation. Most of first protostars were discovered here aswell as many interstellar molecules

Star Factories: M42 GMC in Orion

The Orion nebula is an intense region of Star Formation. Most of first protostars were discovered here aswell as many interstellar molecules

Molecular Clouds: Star Making Factories

Molecular Clouds: Star Making Factories

The Molecular Clouds (some Giant!) which make up a substantial fraction of the interstellar medium are the birth places of the stars. They are the Stellar Nurseries of The Universe

Molecular Clouds: Star Making Factories

The Molecular Clouds (some Giant!) which make up a substantial fraction of the interstellar medium are the birth places of the stars. They are the Stellar Nurseries of The Universe

Molecular Clouds are massive (10^{7} times the mass of The Sun), largest (50-100 pc) and coldest (on average 50 K) objects

Molecular Clouds: Star Making Factories

The Molecular Clouds (some Giant!) which make up a substantial fraction of the interstellar medium are the birth places of the stars. They are the Stellar Nurseries of The Universe

Molecular Clouds are massive (10^{7} times the mass of The Sun), largest (50-100 pc) and coldest (on average 50 K) objects

Molecular Clouds: Star Making Factories

The Molecular Clouds (some Giant!) which make up a substantial fraction of the interstellar medium are the birth places of the stars. They are the Stellar Nurseries of The Universe

Molecular Clouds are massive (10^{7} times the mass of The Sun), largest (50-100 pc) and coldest (on average 50 K) objects

```
1 pc ~ 3 lightyears
    O K ~ -273 Celsius
```


Molecular Clouds: Star Making Factories

The Molecular Clouds (some Giant!) which make up a substantial fraction of the interstellar medium are the birth places of the stars. They are the Stellar Nurseries of The Universe

Molecular Clouds are massive (10^{7} times the mass of The Sun), largest (50-100 pc) and coldest (on average 50 K) objects

Molecular Clouds are composed of a cocktail of molecules $\left(\mathrm{H}_{2}, \mathrm{CO}, \mathrm{NH}_{3}\right.$, ethanol) and DUST a vital component

```
1 pc ~ 3 lightyears
    OK ~ -273 Celsius
```


Molecular Clouds: Star Making Factories

The Molecular Clouds (some Giant!) which make up a substantial fraction of the interstellar medium are the birth places of the stars. They are the Stellar Nurseries of The Universe

Molecular Clouds are massive (10^{7} times the mass of The Sun), largest (50-100 pc) and coldest (on average 50 K) objects

Molecular Clouds are composed of a cocktail of molecules $\left(\mathrm{H}_{2}, \mathrm{CO}, \mathrm{NH}_{3}\right.$, ethanol) and DUST a vital component

Molecular Clouds are divided into 2 types. Small molecular clouds (SMCs) are colder and are distributed throughout the galaxy. There are some 4,000 giant molecular clouds (GMCs) in the Milky Way. They are confined to the spiral arms have average temperatures closer to 100 K .

```
1 pc ~ 3 lightyears
    OK ~ - 273 Celsius
```

Are Protostars Observed?

Morphology + Spectra

Protostellar Jets the Most Spectactular Manifestation of the Star Formation Process

Friday, 1 March 2013

Lecture Problems

The Sun's temperature at its surface is 5500 K , what is the corresponding mean energy per photon?

Nuclear fusion inside the Sun was able to commence once its core temperature had reached 10000000 K , what was the corresponding mean photon energy for this temperature and what is its significance in terms of particle physics?

