UHECR Propagation + Related Physics (~25 mins)

Topics

- Cosmic ray interactions with background radiation fields
- Extragalactic cosmic ray source distribution
- Secondary particles and cascades
- From where?...clues from the first pevatron detected at the Galactic center

Composition- Consider Nuclei?

Assumptions on Source Population

$$\label{eq:dN} \frac{dN}{dV_C} \propto (1+z)^{\mathbf{n}}$$

 $z < z_{max}$

n = -6, -3, 0, 3

 $\frac{d\mathbf{N}}{d\mathbf{E}} \propto \mathbf{E}^{-\alpha} \exp[-\mathbf{E}/\mathbf{E}_{\mathbf{Z},\mathbf{max}}]$

Δ

 $\mathbf{E}_{\mathbf{Z},\mathbf{max}} = (\mathbf{Z}/\mathbf{26}) \times \mathbf{E}_{\mathbf{Fe},\mathbf{max}}$

Note- magnetic field horizon effects are neglected in the following. This amounts to assuming: $\mathbf{d_s} < (\mathbf{ct_H}\lambda_{\mathbf{scat}})^{1/2}$ ie. the source distribution may be approximated to be spatially continuous (also note, presence of t_{H} term comes from temporally continuous assumption)

MCMC Likelihood Scan: Spectral + Composition Fits

MCMC Likelihood Scan: "Soft" Spectra Solutions

MCMC Results Table

	n = -6		n = -3		n = 0		n = 3	
Parameter	Best-fit Value	Posterior Mean & Standard Deviation						
f_{P}	0.03	0.14 ± 0.12	0.08	0.15 ± 0.13	0.17	0.17 ± 0.16	0.19	0.20 ± 0.16
$f_{ m He}$	0.50	0.21 ± 0.17	0.42	0.17 ± 0.16	0.53	0.20 ± 0.17	0.32	0.23 ± 0.20
$f_{ m N}$	0.40	0.50 ± 0.18	0.42	0.51 ± 0.19	0.29	0.47 ± 0.19	0.43	0.45 ± 0.21
$f_{ m Si}$	0.06	0.11 ± 0.12	0.08	0.12 ± 0.13	0.0	0.11 ± 0.12	0.06	0.078 ± 0.086
$f_{ m Fe}$	0.01	0.052 ± 0.039	0.0	0.053 ± 0.042	0.01	0.050 ± 0.038	0.0	0.044 ± 0.034
α	1.8	1.83 ± 0.31	1.6	1.67 ± 0.36	1.1	1.33 ± 0.41	0.6	0.64 ± 0.44
$\log_{10}\left(\frac{E_{\rm Fe,max}}{{ m eV}}\right)$	20.5	20.55 ± 0.26	20.5	20.52 ± 0.27	20.2	20.38 ± 0.25	20.2	20.16 ± 0.18

Flatter spectra preferred for negative DESOurce evolution Hard spectra preferred for source evolution following that of the SFR $^{\rm 9}$

High Spectral Peaked Blazar Evolution

n=-6 evolution result

10¹²

10¹⁰

10¹⁴

10¹⁶

10¹⁸

10²⁰

10²²

10²⁴

10²⁶ v [Hz]

DESY.

Cascade Spectra + the IGRB

Regardless of where the energy is injected (ie independent of source z), the arriving flux possesses a ~universal shape

Secondary (Guaranteed) Gamma-Ray Fluxes From >10^{18.6}eV UHECR Component

Does a Separate Class of Extragalactic Source Dominate at Sub-Ankle Energies?

Cascade Contribution from Second Source Population

The Isotropic Gamma-Ray Background

Lat. Cut + Gal. Foreground Removal

....+ Removal of Res. Blazars

....+ Removal of Unres. Blazars

Using Photon Fluctuation Analysis, the Fermi collaboration pushed a factor of ~10 below the 2FHL sensitivity

$$\frac{\mathbf{dN}}{\mathbf{dS}} \propto \mathbf{S}^{-\alpha}$$

$$\mathbf{I} = \int \mathbf{S} rac{\mathbf{dN}}{\mathbf{dS}} \mathbf{dS}$$

"Our analysis permits us to estimate that point sources, and in particular blazars, explain almost the totality (86⁺¹⁶-14 %) of the >50 GeV EGB."

Fermi Collaboration (2015)- astro-ph/1511.00693

The Isotropic Gamma-Ray Background

Lat. Cut + Gal. Foreground Removal

....+ Removal of Res. Blazars

....+ Removal of Unres. Blazars

Using Photon Fluctuation Analysis, the Fermi collaboration pushed a factor of ~10 below the 2FHL sensitivity

$$\frac{\mathbf{dN}}{\mathbf{dS}} \propto \mathbf{S}^{-\alpha}$$

$$\mathbf{I} = \int \mathbf{S} rac{\mathbf{dN}}{\mathbf{dS}} \mathbf{dS}$$

A repeat of this analysis by other groups have given: $68^{+9}_{-8}\%$ and $81^{+52}_{-19}\%$

Lisanti + (2016) 1606.04101, Zechlin + (2016), 1605.04256

The Origin of Protons Below the Ankle

Note- IGRB contribution from cascade losses rather independent of source spectra

17

.....and Radio Galaxy Contributions Still Not Removed

DESY.

From astro-ph/1304.0908 (Di Mauro et al. 2013) ¹⁸

The Origin of Protons Below the Ankle

Sources at 120 Mpc

If only 1% of EGB comes from subankle UHECR (present limit is 14%), we will be forced to look extremely locally for their sources

An Alternative Interpretation of the Negative Source Evolution Result

At high energies, the negative evolution scenarios help resolve both:

- "hard spectrum"
- "IGRB over-production"

problems.

Alternatively, these scenarios may simply be encapsulating the fact that we've a local dominant source and our local value for UHECR is well above the "sea level"!

From Where?

Particle Acceleration in Centers of Galaxies (within the Central Molecular Zone)

Conclusions

- A negative source evolution allows for an E⁻² type spectra to explain CR above the ankle (such an evolution is observed for the HBL blazars)
- The positive evolution of a separate source class, can account for sub Ankle extragalactic cosmic rays (which again allow an E⁻² type spectra for this component)
- A new estimation of the diffuse gamma-ray background limit excludes positive evolution scenarios for these cosmic rays.
- New diffuse gamma-ray background limits are challenging for both positive and no-evolution scenarios which account for sub-Ankle extragalactic protons
- These results suggest that UHECR exist in a local fog, with the value locally being well above the "sea level".
- An "understanding" of UHECR sources is possible through an understanding of AGN gamma-ray emission at very high energies!

Extra Slides

From Where?

