

EBL constraints using a sample of TeV gamma-ray emitters measured with the MAGIC telescopes

Daniel Mazin

ICRR, U-Tokyo and Max-Planck-Institute for Physics, Munich

A. Domínguez, V. Fallah Ramazani, T. Hassan, A. Moralejo, M. Nievas Rosillo, G. Vanzo, M. Vázquez Acosta

for the MAGIC Collaboration

EBL

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin

EBL combined limits with MAGIC @ Gamma 2016, Heidelberg, July 11-15, 2016

Imprint of the EBL on spectra of HE/VHE gamma ray spectra of distant sources

Cross section of pair production:

- peaks at ~4*Ethreshold
- Delta function approximation is not precise

$$\begin{split} \sigma_{\gamma\gamma}(E,\epsilon,\theta) &= \frac{3\,\sigma_{\rm T}}{16}\,(1-\beta^2)\,\left[\,2\beta\,(\beta^2-2)+(3-\beta^4)\ln\frac{1+\beta}{1-\beta}\,\right] \\ {\rm with}\ \beta &:= \ \left(1-\frac{2\,m_e^2\,c^4}{E\,\epsilon\,(1-\cos\theta)}\right)^{1/2} \end{split}$$

Attenuation of gamma-ray flux is calculated by integrating over number density of EBL, angles between photons, and distance to the source. The attenuation is sensitive to the EBL density.

$$\begin{aligned} \tau(E_{\gamma}, z) &= \int_{0}^{z} d\ell(z') \int_{-1}^{1} d\mu \frac{1-\mu}{2} \int_{\epsilon'_{th}}^{\infty} d\epsilon' \, n(\epsilon', z') \, \sigma_{\gamma\gamma}(\epsilon', E', \mu) \\ \mu &:= \cos \theta \\ n(\epsilon) &:= \text{EBL energy density} \\ d\ell(z) &:= \text{distance element} \end{aligned}$$

Observed flux = Emitted flux x exp(-т)

The MAGIC Telescopes

- Two 17m diameter Imaging Atmospheric Cherenkov Telescopes
- MAGIC-I: since 2004
- MAGIC-II: since 2009, start stereoscopic observations
- 2011-2012: major upgrade of the readout of both and camera of MAGIC-I
- Energy range 50GeV over 50TeV, 0.6% Crab Nebula in 50h observations at E>250GeV
- See performance details in Aleksić et al., AP (2016) 72, 76-94

Method: Poissonian likelihood maximization

- Result of maximization: spectral parameters
- EBL treated as scalable density with a single parameter (same as done in previous studies, e.g. Ackermann et al (Fermi-LAT), Science 338, 1190 (2012), Abramowski et al. (HESS), A&A 550, A4 (2013))

Daniel Mazin

EBL combined limits with MAGIC @ Gamma 2016, Heidelberg, July 11-15, 2016

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Method: Poissonian likelihood maximization

- Scan of EBL scaling parameters and compare with EBL=0 case.
- Assume different intrinsic smooth parametrizations (PWL, LP, EPWL, ELP and lacksquareSEPWL). Realized that PWL is a too strong assumptions. Use LP instead.

Daniel Mazin

7

Rav Research

University of Tokyo

TS $\equiv \chi^2$ (EBL=0) - χ^2 (EBL scale)

Results with 1ES1011+496

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Ahnen et al. (MAGIC), A&A, 590, 24 (2016)

Daniel Mazin

EBL combined limits with MAGIC @ Gamma 2016, Heidelberg, July 11-15, 2016

New sample

ICCRR Institute for Cosmic Ray Research University of Tokyo

source	type	redshift z	period	eff. time (h)
Mrk 421 (15 spectra)	HBL	0,031	20130410-19, 20140426	40,4
1ES1959+650	HBL	0,048	20151106 - 18	4,8
OT546 (1ES1727+502)	HBL	0,055	20151012-1102	6,4
BL Lacertae	HBL	0,069	20150615	1,0
1ES 0229+200	HBL	0,14	2012-2015	105,2
1ES 1ES1011+496	HBL	0,212	20140206-0307	11,8
PKS1510-089	FSRQ	0,361	20150518-19	2,4
PKS1222+216	FSRQ	0,432	20100618	0,5
PG1553+113 (5 spectra)	HBL	0.43-0.58	2012-2-16	66,3
PKS1424+240	HBL	0,601	2014-324-0618	28,2
PKS1441+25	FSRQ	0,939	20150418-23	20,1
B 0218+35	FSRQ	0,944	20140725-26	2,1
Total				289,2

• Assuming power law as one of the possible models for the intrinsic spectrum

Daniel Mazin

EBL combined limits with MAGIC @ Gamma 2016, Heidelberg, July 11-15, 2016

• Excluding power law as one of the possible models for the intrinsic spectrum

Results (systematics)

(Werner-Heisenberg-Institut

- Assuming the light yield is uncertain by +/-15% and repeating the entire analysis chain
- While +15% can be possible (bad weather), -15% is highly unlikely in average, over a large sample, as it would mean the atmosphere+telescope is 15% more transparent than we assume in Monte Carlo

• Testing hypothesis of possible turn up at highest tau values

• Testing hypothesis of possible turn up at highest tau values

Cosmic Ray Research

Final result

 $\frac{1}{Max-Planck-Institut für Physik}$ Institute for Cosmic Ray Research University of Tokyo

Daniel Mazin

EBL combined limits with MAGIC @ Gamma 2016, Heidelberg, July 11-15, 2016

Final result

ICRR Institute for Cosmic Ray Research University of Tokyo

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Da very conservative on the lower side as commented earlier 16

Summary

- MAGIC observed several extragalactic sources that are useful for EBL constraints
- Power-law assumption for intrinsic spectra is prone to bias towards higher EBL and not used here
- new results suggests <14% more EBL than in state-of-the-art EBL models</p>
 - $\alpha_0 = 0.99^{+0.15}$ -0.56, including systematics
- These limits are
 - **r**obust
 - lower limit too conservative
- Wavelength resolved limits are in progress, stay tuned

BACKUP

all SEDs residuals

ICCRR Institute for Cosmic Ray Research University of Tokyo

all SED residuals

ICRRR Institute for Cosmic Ray Research University of Tokyo

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin

Idea behind the EBL limits

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

very simplified way of seeing it:

- The reconstructed AGN spectrum (after correcting for the EBL effect) must be reasonable
- Reasonable means:
 - no pile-up at high energies
 - smooth shape (as it is smooth at lower energies)
 - spectral slope to harder than 1.5 (corresponding to canonical electron spectrum with index 2)
- In case unreasonable intrinsic spectrum is obtained the assumed EBL can be ruled out

Daniel Mazin

1ES1011 result for LogParabola

Residuals:

Constraining range is between 0.2 and 3.5 TeV

VHE gamma rays as probes of the EBL

Likelihood maximization

- 5 functions are tested:
 - power law (PL),
 - power law with exponential cut-off (EPWL),
 - log-parabola (LP),
 - log-parabola with exponential cut-off (ELP)

 $\phi_0(E/E_0)^{-\Gamma}$

 $\phi_0(E/E_0)^{-\Gamma}\exp(-E/E_{\rm cut})$

 $\phi_0(E/E_0)^{-a-b\log(E/E_0)}$

 $\phi_0(E/E_0)^{-a-b\log(E/E_0)}\exp(-E/E_{\rm cut})$

• and power law with super-exponential cut-off (SEPWL). $\phi_0(E/E_0)^{-\Gamma} \exp(-(E/E_{cut})^{\gamma})$

- In the case of LP and ELP, both have the "trick" of doing b -> b² to avoid a positive curvature.
- The most complex functions (e.g. LP) takes as starting parameters for the fit the parameters of the already fitted nested functions (e.g. PWL) Of these, only the SBPWL,

$$\frac{dF}{dE} = f_0 \left(\frac{E}{E_0}\right)^{-\Gamma_1} \left[1 + \left(\frac{E}{E_b}\right)^g\right]^{\frac{\Gamma_1 - \Gamma_2}{g}}$$

achieves an acceptable fit (P = 0.17, χ^2 /d.o.f.= 12.8/9).

1ES1011+496

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

 $dN/dE_{obs} = dN/dE_{int} pow (-\alpha \tau_{model})$

Use likelihood maximization fit

Null hypothesis:

- there is no EBL
- the spectrum is concave
- the spectrum follows a smooth shape
- Tested hypothesis: there is EBL
- Tested shapes:

- power law with cutoff
- log-parabola
- Iog parabola with cutoff
- power law with super(sub)exponential cutoff

averaged differential energy spectrum

Basically you compare: fit with EBL vs. fit without EBL

Institute for Cosmic Ray Research University of Tokyo

- All tested functions prefer a presence of EBL, and EBL level < 1.3 * EBLmodel
- Best fit is at around α = 1.07, i.e. the state of the art EBL (Franceschini et al 2008, Dominguez et al. 2010, etc) is preferred.

Fig. 4. χ^2 probability distributions for the average spectrum of the Feb-March flare of 1ES 1011+496 for the 5 models tested. PWL in blue (dashed line), LP in red (solid line), EPWL in green (dash-dot line), ELP in pink (dotted line) and SEPWL in light blue (long dash-dot line).

Fig. 5. Fit χ^2 distributions for the average spectrum of the Feb-March flare of 1ES 1011+496 for the 5 models tested. PWL in blue (dashed line), LP in red (solid line), EPWL in green (dot-dash line) and ELP in pink (dotted line) and SEPWL in light blue (long dash-dot line). The LP red line is overlapping ELP pink line. Notice how all curves converge after reaching the minimum.

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Table 1. χ^2 probabilities (P) for the cases of $\alpha = 0.0$ and $\alpha = 1.07$

Function	$P(\alpha = 0.0)$	$P(\alpha = 1.07)$
LP	6.0×10^{-4}	0.38
PWL	7.0×10^{-34}	0.46
EPWL	4.5×10^{-9}	0.38
ELP	3.2×10^{-4}	0.30
SEPWL	6.2×10^{-5}	0.30

- For the final result we select the Log parabola (LP) one because:
 - power law hypothesis is a too strong assumption
 - No preference between EPWL and LP
 - all functions behave identically for $\alpha > 1.07$

Fig. 6. Test statistics distribution for the data sample for the 2014 Feb-March flare of 1ES 1011+496. The vertical lines mark the maximum and the uncertainty corresponding to 1 σ .

TS = 21.5, α_0 = 1.07 $^{+0.09}$ $_{-0.13}$, statistically α_0 = 1.07 $^{+0.20}$ $_{-0.24}$, including systematics

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin

EBL combined limits with MAGIC @ Gamma 2016, Heidelberg, July 11-15, 2016

28