Studies of VHE Phenomena in Astrophysical Environments

Gamma-Ray Origin:

leptons or hadrons creating gamma-rays?....investigate sources

$$t_{\rm acc.} = \eta \frac{r_{\rm Larmor}}{c}$$

SNR- RXJ1713

Fast acceleration + cooling occurring

$$t_{\rm acc.} = \eta \frac{r_{\rm Larmor}}{c}$$

 $Log_{10}E_{\gamma}$ [eV]

12 -9 -3 --3 --6 - HESS

Suzaku

$$\frac{r_{\text{Larmor}}}{c} = \left(\frac{E_e}{10^{14} \text{ eV}}\right) \left(\frac{\text{mG}}{B}\right) 10^{-4} \text{ years}$$

$$t_{\rm acc} = \xi \left(\frac{E_{\gamma}}{\rm keV}\right)^{0.5} \left(\frac{B}{\rm mG}\right)^{-1.5} \left(\frac{\beta_{\rm sh}}{0.01}\right)^{-2} \text{ years}$$

Very efficient acceleration seems to be occurring (ξ =1)-> Bohm

SNR

Magnetic Field Amplification by cosmic-rays

 $U_{\rm CR} \approx 10 \ U_{B(initial)}$ $U_{\rm CR} \approx 10^2 U_{B(final)}$

Efficient acceleration of cosmic-ray ions leads to significant amplification of magnetic field in shock precursor.

Diffusion coefficients are reduced in non-linear turbulence...sub Bohm diffusion in upstream region!

-> more rapid acceleration.

Acceleration time determined by longest residence time. 4κ 1

$$t_{res} \approx \frac{4\kappa}{\beta_{sh}c^2} \propto \frac{1}{B}$$

Non-linear field amplification **upstream** of shock front is essential

SNR- RXJ1713 **Emission Origin**

HESS

EGRET

Suzaku

ATCA

Supermassive Blackholes

Variability source size:

 $R_{\text{schement}} = 3 \left(\frac{M}{M} \right) \text{km}$

 $M \approx 10^9 M_{\rm solar}$

 $R \sim c dt \sim (3-6) R_{Schwarz}$

 γ -rays originate from a very compact region

Only possible because is under-luminous (10⁻⁶L_{Edd.})

Able to study acceleration in BH magnetospheres!

 $R_{\rm magnetosphere} \approx 5 R_{\rm Schwarz}$

=> probing the event horizon region in AGN

The CR Connection(s): UHE Photons + UHECR protons Sources

(PRIMARIES)

(SECONDARIES)

Andrew Taylor

Different Interaction Scales

 V_{μ}

resonant-type cross sections

Taylor

Cosmic Background Radiation Fields

The Impedance of Background Radiation to High Energy Protons

$$R = \frac{1}{2\Gamma_p^2} \int_0^\infty \frac{1}{\epsilon_\gamma^2} \frac{dn_\gamma}{d\epsilon_\gamma} d\epsilon_\gamma \int_0^{2\Gamma_p\epsilon_\gamma} d\epsilon_\gamma' \epsilon_\gamma' \sigma_{p\gamma}(\epsilon_\gamma') K_p$$

where R is the energy loss rate

where K_p is the proton inelasticity

The Impedance of Background Radiation to High Energy Photons

The Halo Around Heavenly Bodies

D

р

р

γ

A Homogeneous Source Distribution

Distance [Mpc]

The number of sources within a source shell of width dL would be proportional to dL for a local uniform source distribution

The ratio of sources from the different shells-

$$R_{n+1}: R_n = 1: 0.3$$

Andrew Taylor

The Local UHECR Source Distribution- overdensity

Cen A as a Local UHECR Source

