High-Energy Neutrino Astrophysics Experiments and the correlation with Gamma Ray Experiments

Stefan Schlenstedt

SciNeGHE07, Frascati, June 18-20, 2007

Cosmic Gamma-Rays

electrons \rightarrow gamma rays (synchrotron, inverse Compton)

Neutrino Astro-Particle Physics

- Cosmic rays with energies TeV (and above)
- Photon sources with TeV energies
- Are there neutrino sources: blazars, quasars, Gamma Ray Bursts, supernovae ... is there a diffuse flux?

Neutrinos

are elementary particles

- light
- neutral
- interact only by weak force
- \Rightarrow good astrophysical probes:
- travel straight
- 'not' absorbed over cosmological distances and dense environment

Neutrino Astro-Particle Physics

- Cosmic rays with energies TeV (and above)
- Photon sources with TeV energies
- Are there neutrino sources: blazars, quasars, Gamma Ray Bursts, supernovae ... is there a diffuse flux?

Schlensted

Neutrino Astro-Particle Physics

- Cosmic rays with energies TeV (and above)
- Photon sources with TeV energies
- Are there neutrino sources: blazars, quasars, Gamma Ray Bursts, supernovae ... is there a diffuse flux?

connect astrophysics and particle physics

Schlensted

Particle Propagation through the Universe

Photons: absorbed by dust and radiation Protons/nuclei: deflected by magnetic fields (up to very high energies) reactions with radiation (CMB)

S Schlenstedt SciNeGHE07, Jun 07 HE neutrino experiments

The Gamma Ray Horizon

photons interact electromagnetically

- in the interior of stars
- with starlight, inter-stellar matter and CMBR

 $\gamma \ e \rightarrow \gamma \ e$ $\gamma \ \gamma \rightarrow e^+ \ e^ \gamma \ N \rightarrow N \ e^+ \ e^-$

Ś

5

Large Energy Coverage

Tracks and Showers (cascades)

Use of Cherenkov Light

Cherenkov light is efficiently emitted by relativistic particles in transparent media at UV-blue wavelengths under the condition: $\beta n(\lambda) > 1$

reconstruction uses causality relation $c (t_j - t_0) = l_j + d_j \cot \theta_c$

Event Signatures in IceCube

Neutrino detectors must identify few astrophysical events on top of diffuse atmospheric <u>backgrounds</u> (μ and ν)

Record every year (e.g. AMANDA)

- ≈ 1.3 billion cosmic μ
- ≈ 1000 neutrinos

Trigger efficiency:

- ≈ 70 % Gamma-Ray Bursts
- ≈ 25 % point sources
- ≈ 15 % atmospheric v

Atmospheric muons: down-going events background is due to misreconstructed (fake) tracks

Atmospheric neutrinos:

- upward tracks are good neutrino candidates
- lower energy

S Schlenstedt

SciNeGHE07

Jun 07

Where are the Neutrino Telescopes

Northern Hemisphere Detectors

Baikal NT-200

Antares

Nestor

data taking since 1998 1100 m deep new: 3 distant strings 5 lines in 2400 m deep 12 lines in 2007 had 1 of 12 floors down 4000 m deep completion: 2007?

⇒ Nemo operating prototypes at 2000 m HE neutrino experiments

S Schlenstedt

SciNeGHE07,

, Jun 07

IceCube under Construction – around AMANDA

Completion by 2011

HE neutrino experiments

The Case for more than one Telescope

 0.5π sr instantaneous common view 1.5 π sr common view per day

...complementary v telescopes necessary in both hemispheres

Point Source Sensitivity

Expected Signals in km³ Neutrino-Telescopes

Many calculations and predictions on neutrinos from diffuse and point-sources from Dermer, DiStefano, Mannheim, Protheroe, Stecker, Waxman (and...)

v-Flux predictions for	or 5 year KM3Net	operation (from	γ-ray mea	asurements)	
		$E_v > 1 \text{ TeV}$		astro-ph 0607286	
	Туре	Src	Bkg		
Vela X	PWN	9 – 23	23	higher threshold	
RX J1713.7–3946	SNR	7 – 14	41	lower signal but	
HESS J1825–137	PWN	5 - 10	9	hetter S/N	
Crab Nebula	PWN	4 - 8	5		
HESS J1303–631	NCP	0.8 – 2.3	11		
LS 5039* (INFC)	Binary	0.3 - 0.7	2.5		

NCP: No counterpart at other wavelengths

*no γ-ray absorption

HE neutrino experiments

S Schlenstedt

Expected Signals in km³ Neutrino-Telescopes

Many calculations and predictions on neutrinos from diffuse and point-sources from Dermer, DiStefano, Mannheim, Protheroe, Stecker, Waxman (and...)

v-Flux predictions for	or 5 year KM3Net	operation (from	γ-ray mea	asurements)	
		$E_v > 1 \text{ TeV}$		A. Kappes et al., astro-ph 0607286	
	Туре	Src	Bkg		
Vela X	PWN	9 – 23	23	higher threshold	
RX J1713.7–3946	SNR	7 – 14	41	lower signal but	
HESS J1825–137	PWN	5 – 10	9	hetter S/N	
Crab Nebula	PWN	4 - 8	5		
HESS J1303-631	NCP	0.8 – 2.3	11		
LS 5039* (INFC)	Binary	0.3 – 0.7	2.5		
NCP: No counterpart at other w	vavelengths *no.v-	ray absorption			

neutrino astronomy is a low-statistics field

enhanced signals/sensitivity for

- transient sources
- opaque sources
- sources at higher energies ("PeVatrons")

S

Schlensted

SciNeGHE07, Jun 07

H

neutrino experiments

Search for Neutrinos from specific Sources

some examples (out of 32 sources) of a a five year data analysis

source	nr. of v events	expected background	E ⁻² flux upper limit (90% c.l.) [10 ⁻¹¹ TeV ⁻¹ cm ⁻² s ⁻¹]
Markarian 421	6	7.4	7.4
M87	6	6.1	8.7
1ES 1959+650	5	4.8	13.5
SS433	4	6.1	4.8
Cygnus X-3	7	6.5	11.8
Cygnus X-1	8	7.0	13.2
Crab Nebula	10	6.7	17.8
3C 273	8	4.72	18.0

Search for Neutrinos from specific Sources

some examples (out of 32 sources) of a a five year data analysis

source	nr. of v events	expected background	E ⁻² flux upper limit (90% c.l.) [10 ⁻¹¹ TeV ⁻¹ cm ⁻² s ⁻¹]
Markarian 421	6	7.4	7.4
M87	6	6.1	8.7
1ES 1959+650	5	4.8	13.5
SS433	4	6.1	4.8
Cygnus X-3	7	6.5	11.8
Cygnus X-1	8	7.0	13.2
Crab Nebula	10	6.7	17.8
3C 273	8	4.72	18.0

No significant excess observed

HE neutrino experiments

hlenstedt

Point Source Search with AMANDA

2000-04 (1001 live days) 4282 v → no significant excess found

calculate significance of local fluctuations from expectation of atmospheric neutrinos

- un-binned statistical analysis
- maximum of 3.4 σ compatible with background fluctuation

HE neutrino experiments

S Schlenstedt

Search for Neutrino Flares

astro-ph/0506280

Search for Neutrino Flares

Excess in time-sliding windows? $= 2.25^{\circ}-3.75^{\circ}$ $= 40/20 \text{ days for extra-galactic/ galactic objects}$				sliding windo	ow events time	Schlenstedt
Source	Nr. of v events (4 years)	Expected backgr. (4 years)	Period duration	Nr. of doublets	Probability for highest multiplicity	SciNeGHE07
Markarian 421	6	5.58	40 days	0	Close to 1 🔶	.lun 0
1ES1959+650	5	3.71	40 days	1	0.34	7
3EG J1227+4302	6	4.37	40 days	1	0.43 🖕	
QSO 0235+164	6	5.04	40 days	1	0.52	HF n
Cygnus X-3	6	5.04	20 days	0	Close to 1 🖕	eutring
GRS 1915+105	6	4.76	20 days	1	0.32	ANA
GRO J0422+32	5	5.12	20 days	0	Close to 1	riments

... out of 12 sources: No statistical significant effect observed

GRB Neutrino search

Baikal analysed 1998-99 data with same technique in cascade channel leading to a slightly worse limit

Neutralino Search with Baikal and AMANDA

e.g.soft channel $\chi + \bar{\chi} \rightarrow b + \bar{b}, b \rightarrow c \mu \nu$ hard channel through W

Muon flux from Sun

Nuclear Recoil and indirect searches are complementary and not equivalent

Schlensted

Limits on muon flux from Earth center

Measurements of the Diffuse extraterrestrial Flux

Several models of AGN neutrino emission are ruled out by current measurements

→ precise flux measurement needs km³-size detector

HE neutrino experiments

S Schlenstedt

Physics Summary

AMANDA and Baikal are unique and complementary (Northern/ Southern sky, ice/ water, different analyses techniques) Both experiments have a rich physics program

Other results not shown like the moon shadow, search for fast and slow monopoles, prompt muons from charm decays, neutrino oscillation, Lorentz invariance...

HE neutrino experiments

S Schlenstedt

Physics Summary

AMANDA and Baikal are unique and complementary (Northern/ Southern sky, ice/ water, different analyses techniques) Both experiments have a rich physics program

- Understanding of atmospheric μ's as calibration "beam"
- Measurement of the atmospheric neutrino spectrum
- Limits on diffuse extraterrestrial neutrino flux for TeV-EeV v's
- Point source search in data between 1997 and 2004
- Search for neutrinos coincident with Gamma Ray Bursts
- The supernova–IceCube connection
- Search for trapped neutralinos

Other results not shown like the moon shadow, search for fast and slow monopoles, prompt muons from charm decays, neutrino oscillation, Lorentz invariance...

HE neutrino experiments

Schlensted

Physics Summary

AMANDA and Baikal are unique and complementary (Northern/ Southern sky, ice/ water, different analyses techniques) Both experiments have a rich physics program

- Understanding of atmospheric μ's as calibration "beam"
- Measurement of the atmospheric neutrino spectrum
- Limits on diffuse extraterrestrial neutrino flux for TeV-EeV v's
- Point source search in data between 1997 and 2004
- Search for neutrinos coincident with Gamma Ray Bursts
- The supernova–IceCube connection
- Search for trapped neutralinos

No extraterrestrial v signal observed... yet

Other results not shown like the moon shadow, search for fast and slow monopoles, prompt muons from charm decays, neutrino oscillation, Lorentz invariance...

HE neutrino experiments

Schlensted

Neutrinos and 1ES1959

A posteriori search: three neutrinos in a 66 day period of major outburst – "the orphan flare" (TeV– but no X-ray signal)

not statistically significant – but interesting observation \Rightarrow lead to a modified search strategy and a close collaboration with the γ -ray community (two month test run between AMANDA and MAGIC) HE neutrino experiments

Sensitivities for Point Sources

Diffuse Searches now and in the Future

