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ntroduction: IR-singularities of massive n-point functions

~

We collected some experience in using Mellin-Barnes (MB) representations for
massive loop diagrams

They have proven very useful for the separation — and also evaluation — of the poles
in € = (4 —d)/2 even for very complicated diagrams

often quoted: V. Smirnov (and G. Heinrich) and B. Tausk, planar and non-planar
massive double boxes.

An interesting simpler application — with a potential of automatization — is
demonstrated here:

One-loop n-point functions with both virtual and real massless particles.

They produce both 1/¢-poles from the virtual massless lines and the so-called
end-point singularities from the phase space integrals with [ dFE/E — oo from E =0

The MB-approach might be an ideal tools for the treatment of that at the
amplitude level.

The mathematica packages MB.m (Czakon, CPC 2005) and AMBRE.m (Gluza,
Kajda, Riemann, arXiv:0704.2423, CPC) are well-suited for that.

The result is not only numerical.
We present here a representation in terms of inverse binomial sums and HPL'’s. /
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Example: Massive one-loop 5-point function

Radiative loop diagrams contribute to the NNLO corrections by interfering with
radiative Born diagrams:

D1 —D2

—P3

—P4
D5

Figure 1: A pentagon topology and a Born topology
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/Five of the invariants are independent, e.g.:

s = (pr+ps)°

t = (ps+ps)°

' = (p1+p2)?
Vo = 2paps  ~ Es,
Vi = 2psps ~ Ej

endpoint singularities:

1 1 1 1 1

(p2 +p3)2 —m2  2paps + [p2 —m2] + [p2 -0 Vy 2E3F5(1 — (B cos ) Es

The massless particle’s phase space integral is typically:

d*ps 1 N
/ 25;3 Al N /0 dE3/Es = In(E3)|g = In(w) — In(0) = divergent

w 1 w2 —0
dE E5—d — Ed—4 w
— /0 3/ E3 d—_ 43 6 2¢

= finite

We have to safely control the dependence on V5, V, as part of the mixed infrared

\problem due to the common existence of virtual and real IR-sources.

The invariants V; = 2p;p3; appear also in the Born diagrams and produce the so-called

(1)
(2)
(3)
(4)

(5)

/
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Consider now only the scalar 5-point function.
the massless propagators are d; = k% and d, = (k + p; + ps)°.
The leading singularity is easily found algebraically:

1 _ L |2k(k+pi+p) 1 1
dydodsdyds s dy dodsdyds dydodsdy  dydsdyds

The two IR-divergent 4-point functions trace to one IR-div. 3-point f. each, e.g.

1 _ 1 [2k(k+pi+pstps) 1 1
didsdads Vo dydzdyds didzdy  didyds
and the resulting IR-part is:
/ddk _I/ddk+1/ddk+
d1d2d3d4d5 - SV2 d1d4d5 SV4 d1d2d3
1 [EF( F(t
_ L[E®)  F®)]
€ SVQ SV4

Evidently, one separates only a leading singularity, while we expect an expression like

ddk AQ A4 BQ B4 02 04
= In(Va) + — In(V
/ d1d2d3d4d5 SVQE + SV4€ i SV2 Il( 2) i SV4 Il( 4) i SVQ + SV4 i
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Mellin-Barnes representation for the massive pentagon
The chords ¢; are defined from the propagators: d; = [(k — ¢;)* — m?]

1 5

I5[A(Q)] — _ee’YE/O 11 dxj 5 <1 _lez> % B(q),

J=1

with B(1) =1, B(¢") = Q*, B(¢"¢") = Q"Q" — 59" F(x)/(2 + ¢), and Q" = " z,q;".

The diagram depends on five variables and the I'-form is:

F(z) = mi(xo+ a4+ 25)° + [—s|r123 + [~ Vi]zsxs + [—t]zoxs + [t |xoms + [~ Va]z124.
(7)

Henceforth, my = 1. Massless particle’s momentum is ps.

The Mellin-Barnes (MB)-representation,

1 1 [ B ] (R4 2)'(—2)

is used several times for replacing in F(z) the sum over z;z; by products of monomials
in the z;x;, thus allowing the subsequent z-integrations in a simple manner.

- /




) uleg ‘'dnH ‘L00Z ‘T€-6Z 3P0 ‘6 ¥HL/dH4S 40 SM-ulw DHT ‘uuewsly |

4 D

Why the Mellin-Barnes integrals?

We want to apply a simple formula for integrating over the z;:

1 N
a;—1 (o) T'(an)
. ,‘7 1— O S p— f—

with coefficients «; dependent on F

For this, we have to apply several MB-integrals here:

F(zx) = m%(l'g + x4 + :C5)2 + [=s]zix3 + [ Vi]xsws + [—tlwoxy + [—tw2x5 + [ Vo]T124.
(8)

For each of the +-sign one MB-integral , so arrive at a 7-dimensional path integral.

- /
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The integration path has to separate the chains of poles of ['(\ + z) and I'(—2):




(~1)n A

ResF[z]['(A +2)|,=—n = mF[—n], n=—-A-A-1,---
ResFIAT(1 +2)2|,—, = r[;]z (2F|—n]PolyGammaln] + F'[—n])
ResF[z]T[1 4 z]PolyGammal[l + z]|,—_, = <;[2]n F'[—n]

with the definitions

N
i=1

and
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S1|N] = HarmonicNumber[n-1] - EulerGamma = PolyGamma|n]

-




£G6T-v/81 ‘Welljip) 1seuig ‘sauleg
SE6I-G8T “ew|elr 1aqoy ‘ulja)

T. Riemann, LHC mini-WS of SFB/TRR 9, Oct 29-31, 2007, HUB, Berlinl 0



TTuHed 'dNH "£00C 'T€-6C 0 ‘6 HH1L/G4S $0 SM-1ulw DHT ‘uuewsaly |

(A

~

little history

e N. Usyukina, 1975: "ON A REPRESENTATION FOR THREE POINT FUNCTION", Teor.

Mat. Fiz. 22;
a finite massless off-shell 3-point 1-loop function represented by 2-dimensional MB-integral

E. Boos, A. Davydychev, 1990: "A Method of evaluating massive Feynman integrals”,
Theor. Math. Phys. 89 (1991);
N-point 1-loop functions represented by n-dimensional MB-integral

V. Smirnov, 1999: " Analytical result for dimensionally regularized massless on-shell double
box", Phys. Lett. B460 (1999);

treat UV and IR divergencies by analytical continuation: shifting contours and taking
residues 'in an appropriate way’

B. Tausk, 1999: "Non-planar massless two-loop Feynman diagrams with four on-shell legs”,
Phys. Lett. B469 (1999);

nice algorithmic approach to that, starting from search for some unphysical space-time
dimension d for which the MB-integral is finite and well-defined

M. Czakon, 2005 (with experience from common work with J. Gluza and TR): " Automatized
analytic continuation of Mellin-Barnes integrals”, Comput. Phys. Commun. (2006);

Tausk's approach realized in Mathematica program MB.m, published and available for use/
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We derive MB-representations with AMBRE, a publicly available Mathematica package
J. Gluza, K. Kajda, T. Riemann, arXiv:0704.2423 [hep-ph], to appear in CPC

AMBRE - Automatic Mellin-Barnes Representations for Feynman diagrams

For the Mathematica package AMBRE, many examples, and the program description,
see:

http://prac.us.edu.pl/~gluza/ambre/
http://www-zeuthen.desy.de/theory/research /CAS.html

See also here:

http://www-zeuthen.desy.de/~riemann/Talks/capp07/

with additional material presented at the CAPP — School on Computer Algebra in
Particle Physics, DESY, Zeuthen, March 2007

- /
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A AMBRE functions list

The basic functions of AMBRE are:

e Fullintegral[{numerator},{propagators},{internal momenta}] — is the basic
function for input Feynman integrals

e invariants — is a list of invariants, e.g. invariants = {p1*pl — s}

e IntPart[iteration] — prepares a subintegral for a given internal momentum by collect-
ing the related numerator, propagators, integration momentum

e Subloop|integral] — determines for the selected subintegral the U and F polynomials
and an MB-representation

e ARint[result,i | — displays the MB-representation number i for Feynman integrals
with numerators

e Fauto[0] — allows user specified modifications of the F' polynomial fupc

e BarnesLemmalrepr,1,Shifts->True] — function tries to apply Barnes’ first lemma
to a given MB-representation; when Shifts->True is set, AMBRE will try a simplifying
shift of variables
BarnesLemma|repr,2,Shifts->True] — function tries to apply Barnes’ second lemma
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AMBRE.m examples http://prac.us.edu.pl/~gluza/ambre/

1von2

AMBRE - Automatic Mellin-Barnes REpresentation
(arXiv:0704.2423)

To download 'right click' and 'save target as'.

© The package AMBRE.m
© Kinematics generator for 4- 5- and 6- point functions with any external legs KinematicsGen.m
O Tarball with examples given below examples.tar.gz

= examplel.nb, example2.nb - Massive QED pentagon diagram.

L

= example3.nb - Massive QED one-loop box diagram.

il

= example4.nb - General one-loop vertex.

i} = Mj
=y P i
— my
m3
B=Ms
= example5.nb - Six-point scalar functions;
left: massless case,
right: massive case.
,-‘\ 4 ///
- ~ [ P
\\\ r~ N

= example6.nb - left, example7.nb - right
Massive two-loop planar QED box.
iy &

Pt Ps
®(ky + pL+ g+ pa)

P Py

= example8.nb - The loop-by-loop iterative procedure.
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/IVIB—representation for the scalar massive pentagon \

In our example we get a seven-fold MB-representation, reduce to a four-fold
representations after three times applying Barnes’ lemma in order to eliminate 2
spurious integrations from the mass term. and one from setting ¢’ = ¢ (Born kinematics
assumed here).

4 +1004+u; )
—eE | PERTEY

I - dz;(— 22(_ )4 (—V5)?3 (—V/, —3—€—2z1—22—23—24 7
s = el (=) (1) (V) (V) e

i—1 Y —tootu,

with a normalization 'y = I'|—1 — 2¢|, and the other I'-functions are:

Fl = F[—Zl], FQ—F[—ZQ], F3:F[—Z3], F4:F[1—|—23],
F5 = F[1—|—Z2—|—23], FGZF[—Z4], F7:F[1—|—Z4], ngF[—l—e—zl—z2],
Fg = F[—Z—G—Zl—ZQ—Zg—Z4], Flozr[—2—€—21—23—Z4],
Fll = F[—€+Zl—22—|—24], F12 :F[3—|—6—|—Zl—|—22—|—23—|—24],
and
F13 = F[—1—6—21—22—Z4], F14:F[—€—21—22+Z4].

This is a finite integral if all I'-functions in the numerator have positive real parts of the

\arguments. /
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May be fulfilled with:
e=—3/4

The real shifts u; of the integration strips r; are:

up = -—5H/8
uy = -—7/8
us = —1/16
ug = —5H/8
us = —1/32
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Analytical continuation in ¢ and deformation of integration contours

A well-defined MB-integral was found with the finite parameter ¢ and the strips parallel
to the imaginary axis.

Now look at the real parts of arguments of ['-functions (in the numerator only) and find
out, which of them change sign (become negative) when ¢ — 0

Rule:

Moving ¢ — 0 corresponds to a step-wise analytical continuation of the contour integral
(dimension = n) and so we have to add or subtract the residues at these values of the
integration varables.

The residues have the dimension of integration n —1,n —2,---.

This procedure may be automatized "easily” and it is done in the publicly available
Mathematica package MB.m (M. Czakon, hep-ph/0511200, CPC)

QuIHeg ‘dNH 200 ‘TE-6C 30 6 HH1L/G4S $0 SM-1ulw DHT ‘uuewsaly |
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Analytical continuation, 0 #* ¢ << 1 and e-expansion

After the analytical continuation and the expansion in ¢, the scalar pentagon function is
represented by 11 MB-integrals with different dimensions.

The IR-non-save parts are contained in only few and relatively simple of them:

LY = T (Va) 4+ I3 (Va),
I
I5IR(V2) — 71 + Iy
Ia _ e /”“’5/8 I G il A b R L
e 2 Joiess | 2esVh N
e€VE +ico—5/8 dz
fo = 271 /Z.OO5/8 25Vs [F1[21]T[1 4 2z1] + Fa[z1]T'[1 4+ 2z1]PolyGamma[l + z]
e€VE +ico—7/8 (—s)7 (—t)~21H22( )~ 2= =
+ . / sz/dzl —5)*2(—t) *1TR2 _V2 —2—29 _V4 —1—29
(27TZ)2 —i00—T7/8

F[—zl]F[—l — ZQ]F[—l — 21 — ZQ]F[Zl — ZQ]F[—ZQ]2F[1 + ZQ]F[Z + ZQ]F[l — 21+ 22]
F[—Zzl]F[—l — 222]

- /
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Before taking sums of residua by closing contours to the left (anti-clockwise),
look at powers of (—V5).

Its real part gives (—15)%/%, this would be not integrable for small V5.

Shift the contour 25 by a unit to the left.
This changes: (—15)"%% — (—15)7!/% and after that, the 2-dim.integral is IR-safe.

One residue is crossed and has to be added to the resulting 2-dim. contour integral.

So take here instead of the original 2-dim. integral only the residue as the contribution

of interest:
c€VE +ic0—5/8 dz
IO — . / [(FQ + F4)F[1 —+ Zl] —+ (Fl + F5)[21]F[1 + zl]PolyGamma[l -+ Zl] —+
27'(-7/ —iOO—5/8 28V2
1 T[=2)°
o= () ta o
! (=1) T[—22]
Fy = Fi(yg—2ln[—s] —In[—t] + 21In[—-V4])
F4 = 2F1(—’)/E + ln[—s] —+ ln[—t] — ln[—Vg] — ln[—V4])
Fy, = —2F (9)

rest
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-divergencies as inverse binomial sums

Now take the residues and get:

I 1 1 +i004+u [— 31‘1 1

-1 _ _— dr(_t)—l—r [ T] [ +T] .
€ 25Vo€ 20 ) _ o0 tu ['[—2r]

With Mathematica or using Kalmykov et al. or Huber & Maitre:
Iy 1 i (t)"™ _ 4arcsin(y/t/2) 2y In(y)
e  2sVahe ol W O VeA — WVt Vo(l —y?2)’
(2n +1)
n

with

and for the constant term in «:
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Rewrite into Polylogs and/or Harmonic PolyLogs

The inverse binomial sums may be summed:

See Davyvdychev,Kalmykov and quite recently also Huber,Maitre.
Here, the following question is of some interest:

— Why these harmonic numbers?

Look at intermediate 11 MB-integrals, e.g.:

One of the 4 contributing MB-integrals — out of the 11 — is Int07:

Int07 = Sum of residues
e”Eeﬁ(—s)_l_ze(—Vg)%
226V4
['[3/2 4 €]['[—2¢]|T'[2€]T[1 + 2€]
['[3/2 + €]
HypergeometricPFQI[1, 1 + 2¢], [3/2 + €], t /4]




-

Without taking the sum:

Int07 = Sum of residues
EYE(_o\—1—2¢(__ 2e€
S ) N el C VS N EP S TED
Vi

o0

['[2€ + 2n]

n=1
The well-known formula (Weinzierl 0402131 eq. 35 and maybe many others)
—e)k .
I’[n + 1+ 6] — 1"[1 T G]F[l 4 n]e— Dory %HarmonlcNumber[n,k]

shows why we meet the inverse harmonic sums with the harmonic numbers S;[n| and
Sl [271]
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Zt_HnF[e—i—n]F[Qe—l—n] (10)

/
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Summary

We present a general algorithm for the evaluation of mixed IR-divergencies from virtual and

real emission in terms of inverse binomial sums.

With AMBRE.m (May 2007) and MB.m (2005) and maybe in more complicated situations

also with HypExp 2 on Expanding Hypergeometric Functions about Half-Integer
Parameters, arXiv:0708.2443 [hep-ph]| this may be automatized.

The cases of more masses or more legs or more loops or of tensor integrals should not get
much more complicated. But: Take sums for e.g. a massive 2-loop case . ..

For relatively simple applications like IR-divergent parts, an analytical treatment with
MB-integrals may be quite useful.




