A new treatment of mixed virtual and real IR-singularities

Tord Riemann, DESY, Zeuthen

based on work with:

J. Fleischer (U.Bielefeld) and J. Gluza (U.Silesia, Katowice),

Project B1 – SFB/TRR 9, HUB, Berlin, 30 Oct. 2007 Mini-WS on Massive Particle Production at the LHC

- ullet Introduction: IR-singularities of massive n-point functions
- Mellin-Barnes representations for Feynman diagrams
- Mixed IR-singularities from loops and soft real emission
- Summary

Introduction: IR-singularities of massive n-point functions

- We collected some experience in using Mellin-Barnes (MB) representations for massive loop diagrams
- They have proven very useful for the separation and also evaluation of the poles in $\epsilon=(4-d)/2$ even for very complicated diagrams often quoted: V. Smirnov (and G. Heinrich) and B. Tausk, planar and non-planar massive double boxes.
- An interesting simpler application with a potential of automatization is demonstrated here: One-loop n-point functions with both virtual and real massless particles. They produce both $1/\epsilon$ -poles from the virtual massless lines and the so-called end-point singularities from the phase space integrals with $\int dE/E \to \infty$ from E=0
- The MB-approach might be an ideal tools for the treatment of that at the amplitude level.
- The mathematica packages MB.m (Czakon, CPC 2005) and AMBRE.m (Gluza, Kajda, Riemann, arXiv:0704.2423, CPC) are well-suited for that.
- The result is not only numerical.

 We present here a representation in terms of inverse binomial sums and HPL's.

Example: Massive one-loop 5-point function

Radiative loop diagrams contribute to the NNLO corrections by interfering with radiative Born diagrams:

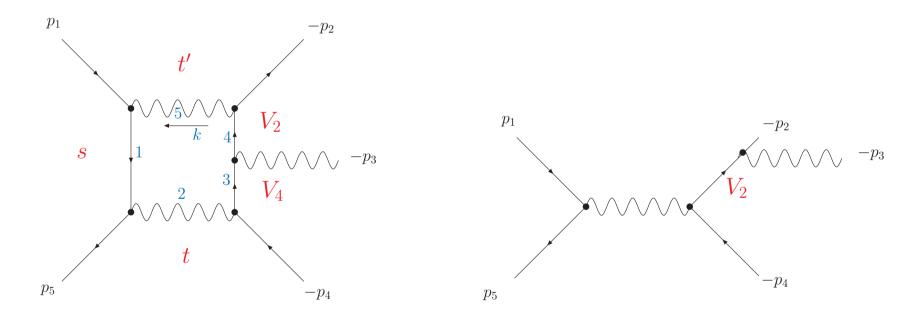


Figure 1: A pentagon topology and a Born topology

Five of the invariants are independent, e.g.:

$$s = (p_1 + p_5)^2,$$

$$t = (p_4 + p_5)^2, (1)$$

$$t' = (p_1 + p_2)^2, (2)$$

$$V_2 = 2p_2p_3 \sim E_3,$$
 (3)

$$V_4 = 2p_4p_3 \sim E_3$$
 (4)

The invariants $V_i = 2p_ip_3$ appear also in the Born diagrams and produce the so-called endpoint singularities:

$$\frac{1}{(p_2+p_3)^2-m^2} = \frac{1}{2p_2p_3+[p_2^2-m^2]+[p_3^2-0]} = \frac{1}{V_2} = \frac{1}{2E_3E_2(1-\beta_2\cos\vartheta)} \sim \frac{1}{E_3}$$

The massless particle's phase space integral is typically:

$$\int \frac{d^3 p_3}{2E_3} \frac{1}{V_2 V_4} \sim \int_0^\omega dE_3 / E_3 = \ln(E_3)|_0^\omega = \ln(\omega) - \ln(0) = divergent$$

$$\to \int_0^\omega dE_3 / E_3^{5-d} = \frac{1}{d-4} E_3^{d-4}|_0^\omega = \frac{\omega^{2\epsilon} - 0}{2\epsilon} = finite$$
 (5)

We have to safely control the dependence on V_2, V_4 as part of the mixed infrared problem due to the common existence of virtual and real IR-sources.

Consider now only the scalar 5-point function.

the massless propagators are $d_5 = k^2$ and $d_2 = (k + p_1 + p_5)^2$.

The leading singularity is easily found algebraically:

$$\frac{1}{d_1 d_2 d_3 d_4 d_5} = \frac{-1}{s} \left[\frac{2k(k+p_1+p_5)}{d_1 d_2 d_3 d_4 d_5} - \frac{1}{d_1 d_2 d_3 d_4} - \frac{1}{d_1 d_3 d_4 d_5} \right]$$

The two IR-divergent 4-point functions trace to one IR-div. 3-point f. each, e.g.

$$\frac{1}{d_1 d_3 d_4 d_5} = \frac{-1}{V_2} \left[\frac{2k(k+p_1+p_4+p_5)}{d_1 d_3 d_4 d_5} - \frac{1}{d_1 d_3 d_4} - \frac{1}{d_1 d_4 d_5} \right]$$

and the resulting IR-part is:

$$\int \frac{d^{d}k}{d_{1}d_{2}d_{3}d_{4}d_{5}} = \frac{1}{sV_{2}} \int \frac{d^{d}k}{d_{1}d_{4}d_{5}} + \frac{1}{sV_{4}} \int \frac{d^{d}k}{d_{1}d_{2}d_{3}} + \cdots
= \frac{1}{\epsilon} \left[\frac{F(t')}{sV_{2}} + \frac{F(t)}{sV_{4}} \right] + \cdots$$
(6)

Evidently, one separates only a leading singularity, while we expect an expression like

$$\int \frac{d^d k}{d_1 d_2 d_3 d_4 d_5} = \frac{A_2}{s V_2 \epsilon} + \frac{A_4}{s V_4 \epsilon} + \frac{B_2}{s V_2} \ln(V_2) + \frac{B_4}{s V_4} \ln(V_4) + \frac{C_2}{s V_2} + \frac{C_4}{s V_4} + \cdots$$

Mellin-Barnes representation for the massive pentagon

The chords q_i are defined from the propagators: $d_i = [(k-q_i)^2 - m_i^2]$

$$I_{5}[A(q)] = -e^{\epsilon \gamma_{E}} \int_{0}^{1} \prod_{j=1}^{5} dx_{j} \, \delta\left(1 - \sum_{i=1}^{5} x_{i}\right) \frac{\Gamma\left(3 + \epsilon\right)}{F(x)^{3 + \epsilon}} \, \underline{B}(q),$$

with
$$B(1)=1, B(q^{\mu})=Q^{\mu}, B(q^{\mu}q^{\nu})=Q^{\mu}Q^{\nu}-\frac{1}{2}g^{\mu\nu}F(x)/(2+\epsilon)$$
, and $Q^{\mu}=\sum x_iq_i^{\mu}$.

The diagram depends on five variables and the F-form is:

$$F(x) = m_0^2(x_2 + x_4 + x_5)^2 + [-s]x_1x_3 + [-V_4]x_3x_5 + [-t]x_2x_4 + [-t']x_2x_5 + [-V_2]x_1x_4.$$
(7)

Henceforth, $m_0 = 1$. Massless particle's momentum is p_3 .

The Mellin-Barnes (MB)-representation,

$$\frac{1}{[A(x) + Bx_i x_j]^R} = \frac{1}{2\pi i} \int_{\mathcal{C}} dz [A(x)]^z [Bx_i x_j]^{-R-z} \frac{\Gamma(R+z)\Gamma(-z)}{\Gamma(R)},$$

is used several times for replacing in F(x) the sum over x_ix_j by products of monomials in the x_ix_j , thus allowing the subsequent x-integrations in a simple manner.

Why the Mellin-Barnes integrals?

We want to apply a simple formula for integrating over the x_i :

$$\int_0^1 \prod_{j=1}^N dx_j \ x_j^{\alpha_j - 1} \ \delta \left(1 - x_1 - \dots - x_N \right) = \frac{\Gamma(\alpha_1) \cdots \Gamma(\alpha_N)}{\Gamma(\alpha_1 + \dots + \alpha_N)}$$

with coefficients α_i dependent on F

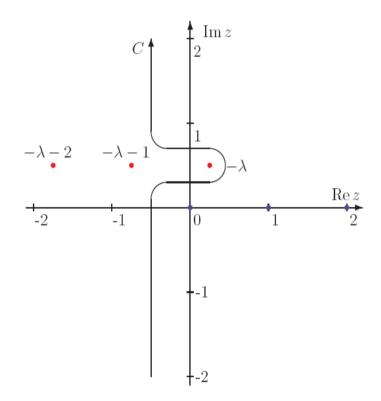
For this, we have to apply several MB-integrals here:

$$F(x) = m_0^2(x_2 + x_4 + x_5)^2 + [-s]x_1x_3 + [-V_4]x_3x_5 + [-t]x_2x_4 + [-t']x_2x_5 + [-V_2]x_1x_4.$$
(8)

For each of the +-sign one MB-integral , so arrive at a 7-dimensional path integral.

$$\frac{1}{[A(s)x_1^{a_1} + B(s)x_1^{b_1}x_2^{b_2}]^{\lambda}} = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} dz [A(s)x_1^{a_1}]^z [B(s)x_1^{b_1}x_2^{b_2}]^{\lambda+z} \Gamma(\lambda+z)\Gamma(-z)$$

The integration path has to separate the chains of poles of $\Gamma(\lambda+z)$ and $\Gamma(-z)$:



$$\operatorname{ResF}[\mathbf{z}]\Gamma(\mathbf{A}+\mathbf{z})|_{\mathbf{z}=-\mathbf{n}} = \frac{(-1)^{n-A}}{(n-A)!}F[-n], n = -A, -A - 1, \cdots$$

$$\operatorname{ResF}[\mathbf{z}]\Gamma(1+\mathbf{z})^{2}|_{\mathbf{z}=-\mathbf{n}} = \frac{1}{\Gamma[n]^{2}}(2F[-n]\operatorname{PolyGamma}[\mathbf{n}] + F'[-\mathbf{n}])$$

$$\operatorname{ResF}[\mathbf{z}]\Gamma[1+\mathbf{z}]\operatorname{PolyGamma}[1+\mathbf{z}]|_{\mathbf{z}=-\mathbf{n}} = \frac{(-1)^{n}}{\Gamma[n]}F'[-n]$$

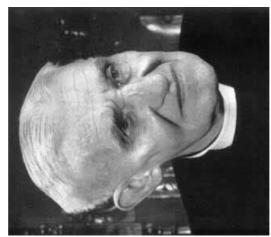
with the definitions

$$S_k[N] = \sum_{i=1}^{N} \frac{1}{i^k}$$

and

 $S_1[N] = \text{HarmonicNumber[n-1]} - \text{EulerGamma} = \text{PolyGamma[n]}$

Mellin, Robert Hjalmar, 1854-1933 Barnes, Ernest William, 1874-1953



A little history

- N. Usyukina, 1975: "ON A REPRESENTATION FOR THREE POINT FUNCTION", Teor.
 Mat. Fiz. 22;
 a finite massless off-shell 3-point 1-loop function represented by 2-dimensional MB-integral
- E. Boos, A. Davydychev, 1990: "A Method of evaluating massive Feynman integrals", Theor. Math. Phys. 89 (1991);
 N-point 1-loop functions represented by n-dimensional MB-integral
- V. Smirnov, 1999: "Analytical result for dimensionally regularized massless on-shell double box", Phys. Lett. B460 (1999);
 treat UV and IR divergencies by analytical continuation: shifting contours and taking residues 'in an appropriate way'
- B. Tausk, 1999: "Non-planar massless two-loop Feynman diagrams with four on-shell legs", Phys. Lett. B469 (1999);
 nice algorithmic approach to that, starting from search for some unphysical space-time dimension d for which the MB-integral is finite and well-defined
- M. Czakon, 2005 (with experience from common work with J. Gluza and TR): "Automatized analytic continuation of Mellin-Barnes integrals", Comput. Phys. Commun. (2006); Tausk's approach realized in Mathematica program MB.m, published and available for use

We derive MB-representations with AMBRE, a publicly available Mathematica package

J. Gluza, K. Kajda, T. Riemann, arXiv:0704.2423 [hep-ph], to appear in CPC

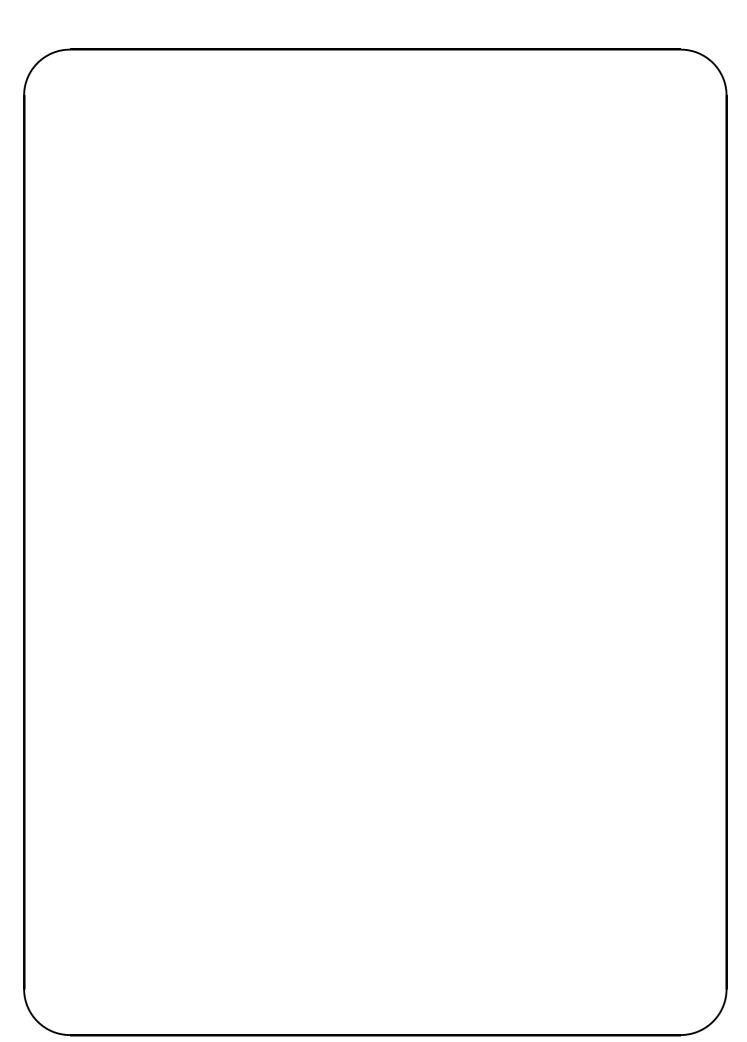
AMBRE – Automatic Mellin-Barnes Representations for Feynman diagrams

For the Mathematica package AMBRE, many examples, and the program description, see:

http://prac.us.edu.pl/~gluza/ambre/ http://www-zeuthen.desy.de/theory/research/CAS.html

See also here:

http://www-zeuthen.desy.de/ \sim riemann/Talks/capp07/ with additional material presented at the CAPP – School on Computer Algebra in Particle Physics, DESY, Zeuthen, March 2007



A AMBRE functions list

The basic functions of AMBRE are:

- Fullintegral[{numerator},{propagators},{internal momenta}] is the basic function for input Feynman integrals
- invariants is a list of invariants, e.g. invariants = $\{p1*p1 \rightarrow s\}$
- IntPart[iteration] prepares a subintegral for a given internal momentum by collecting the related numerator, propagators, integration momentum
- Subloop[integral] determines for the selected subintegral the U and F polynomials and an MB-representation
- **ARint**[result,i_] displays the MB-representation number i for Feynman integrals with numerators
- Fauto[0] allows user specified modifications of the F polynomial fupc
- BarnesLemma[repr,1,Shifts->True] function tries to apply Barnes' first lemma to a given MB-representation; when Shifts->True is set, AMBRE will try a simplifying shift of variables

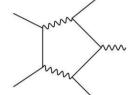
BarnesLemma[repr,2,Shifts->True] – function tries to apply Barnes' second lemma

AMBRE.m examples http://prac.us.edu.pl/~gluza/ambre/

AMBRE - Automatic Mellin-Barnes REpresentation (arXiv:0704.2423)

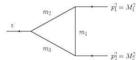
To download 'right click' and 'save target as'.

- The package AMBRE.m
- O Kinematics generator for 4- 5- and 6- point functions with any external legs KinematicsGen.m
- Tarball with examples given below <u>examples.tar.qz</u>
 <u>example1.nb</u>, <u>example2.nb</u> Massive QED pentagon diagram.



■ example3.nb - Massive QED one-loop box diagram.

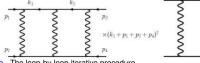
■ example4.nb - General one-loop vertex.



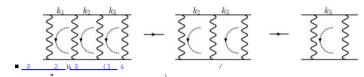
■ <u>example5.nb</u> - Six-point scalar functions;

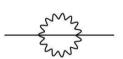
left: massless case, right: massive case.

■ example6.nb - left, example7.nb - right Massive two-loop planar QED box.



■ <u>example8.nb</u> - The loop-by-loop iterative procedure.





MB-representation for the scalar massive pentagon

In our example we get a seven-fold MB-representation, reduce to a four-fold representations after three times applying Barnes' lemma in order to eliminate 2 spurious integrations from the mass term. and one from setting $t^\prime=t$ (Born kinematics assumed here).

$$I_5 = \frac{-e^{\epsilon \gamma_E}}{(2\pi i)^4} \prod_{i=1}^4 \int_{-i\infty+u_i}^{+i\infty+u_i} dz_i (-s)^{z_2} (-t)^{z_4} (-V_2)^{z_3} (-V_4)^{-3-\epsilon-z_1-z_2-z_3-z_4} \frac{\prod_{j=1..12} \Gamma_j}{\Gamma_0 \Gamma_{13} \Gamma_{14}},$$

with a normalization $\Gamma_0 = \Gamma[-1-2\epsilon]$, and the other Γ -functions are:

$$\Gamma_{1} = \Gamma[-z_{1}], \quad \Gamma_{2} = \Gamma[-z_{2}], \quad \Gamma_{3} = \Gamma[-z_{3}], \quad \Gamma_{4} = \Gamma[1+z_{3}],
\Gamma_{5} = \Gamma[1+z_{2}+z_{3}], \quad \Gamma_{6} = \Gamma[-z_{4}], \quad \Gamma_{7} = \Gamma[1+z_{4}], \quad \Gamma_{8} = \Gamma[-1-\epsilon-z_{1}-z_{2}],
\Gamma_{9} = \Gamma[-2-\epsilon-z_{1}-z_{2}-z_{3}-z_{4}], \quad \Gamma_{10} = \Gamma[-2-\epsilon-z_{1}-z_{3}-z_{4}],
\Gamma_{11} = \Gamma[-\epsilon+z_{1}-z_{2}+z_{4}], \quad \Gamma_{12} = \Gamma[3+\epsilon+z_{1}+z_{2}+z_{3}+z_{4}],$$

and

$$\Gamma_{13} = \Gamma[-1 - \epsilon - z_1 - z_2 - z_4], \quad \Gamma_{14} = \Gamma[-\epsilon - z_1 - z_2 + z_4].$$

This is a finite integral if all Γ -functions in the numerator have positive real parts of the arguments.

May be fulfilled with:

$$\epsilon = -3/4$$

The real shifts u_i of the integration strips r_i are:

$$u_1 = -5/8$$
 $u_2 = -7/8$
 $u_3 = -1/16$
 $u_4 = -5/8$
 $u_5 = -1/32$

Analytical continuation in ϵ and deformation of integration contours

A well-defined MB-integral was found with the finite parameter ϵ and the strips parallel to the imaginary axis.

Now look at the real parts of arguments of Γ -functions (in the numerator only) and find out, which of them change sign (become negative) when $\epsilon \to 0$

Rule:

Moving $\epsilon \to 0$ corresponds to a step-wise analytical continuation of the contour integral (dimension = n) and so we have to add or subtract the residues at these values of the integration variables.

The residues have the dimension of integration $n-1, n-2, \cdots$.

This procedure may be automatized "easily" and it is done in the publicly available Mathematica package MB.m (M. Czakon, hep-ph/0511200, CPC)

Analytical continuation, $0 \neq \epsilon << 1$ and ϵ -expansion

After the analytical continuation and the expansion in ϵ , the scalar pentagon function is represented by 11 MB-integrals with different dimensions.

The IR-non-save parts are contained in only few and relatively simple of them:

$$I_5^{IR} = I_5^{IR}(V_2) + I_5^{IR}(V_4),$$

$$I_5^{IR}(V_2) = \frac{I_{-1}}{\epsilon} + I_0$$

$$\frac{I_{-1}}{\epsilon} = \frac{e^{\epsilon \gamma_E}}{2\pi i} \int_{-i\infty-5/8}^{+i\infty-5/8} dz_1 \frac{(-t)^{-1-z_1}}{2\epsilon s V_2} \frac{\Gamma[-z_1]^3 \Gamma[1+z_1]}{\Gamma[-2z_1]}$$

$$I_{0} = \frac{e^{\epsilon \gamma_{E}}}{2\pi i} \int_{-i\infty-5/8}^{+i\infty-5/8} \frac{dz_{1}}{2sV_{2}} \left[F_{1}[z_{1}]\Gamma[1+z_{1}] + F_{2}[z_{1}]\Gamma[1+z_{1}] \operatorname{PolyGamma}[1+z_{1}] \right]$$

$$+ \frac{e^{\epsilon \gamma_{E}}}{(2\pi i)^{2}} \int_{-i\infty-7/8}^{+i\infty-7/8} dz_{2} \int dz_{1}(-s)^{z_{2}} (-t)^{-z_{1}+z_{2}} (-V_{2})^{-2-z_{2}} (-V_{4})^{-1-z_{2}}$$

$$+ \frac{\Gamma[-z_{1}]\Gamma[-1-z_{2}]\Gamma[-1-z_{1}-z_{2}]\Gamma[z_{1}-z_{2}]\Gamma[-z_{2}]^{2}\Gamma[1+z_{2}]\Gamma[2+z_{2}]\Gamma[1-z_{1}+z_{2}]}{\Gamma[-2z_{1}]\Gamma[-1-2z_{2}]}$$

Before taking sums of residua by closing contours to the left (anti-clockwise),

look at powers of $(-V_2)$.

Its real part gives $(-V_2)^{-9/8}$, this would be not integrable for small V_2 .

Shift the contour z_2 by a unit to the left.

This changes: $(-V_2)^{-9/8} \rightarrow (-V_2)^{-1/8}$ and after that, the 2-dim.integral is IR-safe.

One residue is crossed and has to be added to the resulting 2-dim. contour integral.

So take here instead of the original 2-dim. integral only the residue as the contribution of interest:

$$I_0 = \frac{e^{\epsilon \gamma_E}}{2\pi i} \int_{-i\infty-5/8}^{+i\infty-5/8} \frac{dz_1}{2sV_2} \left[(F_2 + F_4)\Gamma[1 + z_1] + (F_1 + F_5)[z_1]\Gamma[1 + z_1] \text{PolyGamma}[1 + z_1] + rest \right]$$

$$F_{1} = (-t)^{-1-z_{1}} \frac{\Gamma[-z_{1}]^{3}}{\Gamma[-2z_{1}]}$$

$$F_{2} = F_{1}(\gamma_{E} - 2\ln[-s] - \ln[-t] + 2\ln[-V_{4}])$$

$$F_{4} = 2F_{1}(-\gamma_{E} + \ln[-s] + \ln[-t] - \ln[-V_{2}] - \ln[-V_{4}])$$

$$F_{5} = -2F_{1}$$
(9)

IR-divergencies as inverse binomial sums

Now take the residues and get:

$$\frac{I_{-1}}{\epsilon} = \frac{1}{2sV_2\epsilon} \frac{1}{2\pi i} \int_{-i\infty+u}^{+i\infty+u} dr(-t)^{-1-r} \frac{\Gamma[-r]^3\Gamma[1+r]}{\Gamma[-2r]}.$$

With Mathematica or using Kalmykov et al. or Huber & Maitre:

$$\frac{I_{-1}}{\epsilon} = \frac{1}{2sV_{2}\epsilon} \sum_{n=0}^{\infty} \frac{(t)^{n}}{\binom{2n}{n}(2n+1)} = \frac{4\arcsin(\sqrt{t/2})}{V_{2}\sqrt{4-t}\sqrt{t}} = -\frac{2y\ln(y)}{V_{2}(1-y^{2})},$$

with

$$y \equiv y(t) = \frac{\sqrt{1-4/t}-1}{\sqrt{1-4/t}+1}.$$

and for the constant term in ϵ :

$$I_0 = \frac{1}{2sV_2} \sum_{n=0}^{\infty} \frac{(t)^n}{\binom{2n}{n}} [-2\ln[-V_2] - 3S_1[n] + 2S_1[2n]] \rightarrow \text{Polylogs, HPL's}$$

Rewrite into Polylogs and/or Harmonic PolyLogs

The inverse binomial sums may be summed:

See Davyvdychev, Kalmykov and quite recently also Huber, Maitre.

Here, the following question is of some interest:

→ Why these harmonic numbers?

Look at intermediate 11 MB-integrals, e.g.:

One of the 4 contributing MB-integrals – out of the 11 – is Int07:

Int07 = Sum of residues
=
$$\frac{e^{\epsilon \gamma_E} \epsilon \sqrt{\pi} (-s)^{-1-2\epsilon} (-V_2)^{2\epsilon}}{2^{2\epsilon} V_4}$$

$$\frac{\Gamma[3/2 + \epsilon] \Gamma[-2\epsilon] \Gamma[2\epsilon] \Gamma[1 + 2\epsilon]}{\Gamma[3/2 + \epsilon]}$$
HypergeometricPFQ[[1, 1 + 2\epsilon], [3/2 + \epsilon], t/4]

Without taking the sum:

Int07 = Sum of residues
=
$$\frac{e^{\epsilon \gamma_E}(-s)^{-1-2\epsilon}(-V_2)^{2\epsilon}}{V_4} \Gamma[-2\epsilon] \Gamma[1+2\epsilon]$$

$$\sum_{n=1}^{\infty} t^{-1+n} \frac{\Gamma[\epsilon+n]\Gamma[2\epsilon+n]}{\Gamma[2\epsilon+2n]}$$
(10)

The well-known formula (Weinzierl 0402131 eq. 35 and maybe many others)

$$\Gamma[n+1+\epsilon] = \Gamma[1+\epsilon]\Gamma[1+n]e^{-\sum_{k=1}^{\infty} \frac{(-\epsilon)^k}{k}} \text{HarmonicNumber}[n,k]$$

shows why we meet the inverse harmonic sums with the harmonic numbers $S_1[n]$ and $S_1[2n]$.

Summary

- We present a general algorithm for the evaluation of mixed IR-divergencies from virtual and real emission in terms of inverse binomial sums.
- With AMBRE.m (May 2007) and MB.m (2005) and maybe in more complicated situations also with HypExp 2 on Expanding Hypergeometric Functions about Half-Integer Parameters, arXiv:0708.2443 [hep-ph] this may be automatized.
- The cases of more masses or more legs or more loops or of tensor integrals should not get much more complicated. But: Take sums for e.g. a massive 2-loop case . . .
- For relatively simple applications like IR-divergent parts, an analytical treatment with MB-integrals may be quite useful.