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NNLO contributions to Bhabha scattering

Tord Riemann, DESY, Zeuthen

based on work with:
S. Actis (RWTH Aachen), M. Czakon (U. Wiirzburg)

and J. Gluza (Sileasian U. Katowice)
10 Dec 2008, Seminar U. Edinburgh

e Bhabha scattering — Born cross-section and experimental aspects
e Electroweak one-loop contributions

e LEP and later: Meson factories, ILC, GigaZ

e Overview: Two-loop contributions to Bhabha Scattering

e Heavy fermion and hadronic contributions with m? << mfc, s, t
ACGR: Phys. Rev. Letters 100 (2008) [arXiv:0711..3847]
ACGR: Phys. Rev. D78 (2008) 085019 [arXiv:0807.4691]

K. Summary and outlook
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Born cross-section and experimental aspects

dog a? (s t
— 4142
ds} s ( L

where the relations between beam energy, scat-

tering angle and s, t are:
s = 4FE”?

tzg(l—cosﬁ)

H. Bhabha,

“The Scattering of Positrons by Electrons with Ex-
change on Dirac’'s Theory of the Positron”,

Proc. Roy. Soc. Al54 (1936) 195
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e strong forward peak

e But: p-pair production advantageous ?

simple process with zero [one] mass scales

~

/
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It is not completely clear
[to us]

whether one may make
the paper

public in the web.

Here is the first page:

Scattering of Positrons by Electrons 195

molecules have orientations similar to the dibenzyl orientation, and the
other two can approximately be derived from them by a rotation of 180°
about the @ axis, and a translation of 4c. The resulting structure explains
the pseudo-orthorhombic properties, the approximate halvings, and the
principal X-ray intensities. It is contrary to a structure previously deduced
from magnetic measurements by Krishnan, Guha, and Banerjee, who
predicted a twisted and distorted molecule; but it is shown that the new
structure is equally capable of explaining the magnetic data. Detailed
measurements have not yet been made on tolane and azobenzene, but the
preliminary data are sufficient to show that they are both closely similar

to the stilbene structure.

The Scattering of Positrons by Electrons with Exchange
on Dirac’s Theory of the Positron ,

By H. J. BuasHA, Ph.D., Gonville and Caius College
(Communicated by R. H. Fowler, F.R.S.—Received October 20, 1935)

It has been shown by Mottf that exchange effects play a considerable
part in the collision and consequent scattering of one electron by anothér.
Mott’s original calculation was non-relativistic, and there the exchange
effect vanishes when the two electrons have their spins pointing in opposite
directions. Maller} later developed relativistically invariant expressions
for the collision of two charged particles with spin, and it may be seen
directly from Mpller’s general formula for the collision cross-section
that, in the collision of two identical particles, the effect of exchange does
not in general vanish even when the two colliding particles initially have
their spins pointing in opposite directions. It tends however to zero
in this case as the relative velocity of the particles becomes small compared
to ¢, the velocity of light, in agreement with the calculation of Mott.

The effect of exchange in the general relativistic case will still be con-
siderable if one of the two electrons be initially (and therefore finally)
in a state of negative energy. (If one of the electrons be initially in a
negative energy state, then it follows from the conservation of energy

+ ¢ Proc. Roy. Soc.,” A, vol. 126, p. 259 (1930).
1 ¢ Ann. Physik,” vol. 14, p. 531 (1932).
02
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Here some formula:

It would take a while to dis-
cover that the paper derives
what we call now Bhabha scat-
tering

202 H. J. Bhabha

where we bave inserted in expressions like (11) the values of E,"*, p,"*,
etc., in terms of E*, p*, p'*. The spurs in (14) are easily evaluated if we
remember that the spurs of all the Dirac matrices and their products are
zero, excepting that of the unit matrix.

We get finally for the differential effective cross-section dQ* for t}}e
scattering of the electron through an angle between 0* and 0* - 40* in
the system L* the expression

4 1
4Q* = 3 rerm | (e yrsmrgge (1 4 (™ — D cos 30
+2(y* — 12 (1 + cos*36%)}
+ %{3 +4(y*2 = 1)+ (v*2 — 12 (1 4 cos? 6%)}
.

1
TR = D0

+ (y* — 12l + cos o*)z}] .sin 6% d6*. (15)

#{3+4(r*—1) (1 + cos 6%)

This is just dQ. We may, if we choose, express it in terms of ©
and y by using the relations (1) and (2). This would only lead to very
complicated expressions, and it is more convenient to leave it in its present
form.  dQ is the differential effective cross-section for the scattering of
the electron through an angle between § and 6 + @0 in the system in
which the positron is initially at rest. But (15) is clearly quite symmetrical
between the positron and electron, so that dQ also gives the effective
cross-section for the scattering of the positron through an angle between
6 and 6 4 40 in the system in which the electron is initially at rest. We
shall henceforth use L to denote any system in which either the electron.
or the positron is initially at rest.

For many purposes it is more convenient to express the scattering in
terms of the number of particles initially at rest which after the collision
receive a certain fraction e of the kinetic energy of the colliding particle.
Let B’y denote in the system L the energy after the collision of the particle
which was initially at rest. (It may be either an electron or a positron.)
Then E'y is connected with 6 by the usual relativistic formulat

B’y = 3mec?{y + 1 — (y — 1) cos 6*}. (16)
If = be the ratio of the kinetic energy of this particle after the collision to

T Moeller, © Ann. Physik,” vol. 14, p. 531 (1932), formula (70).




-

T. Riemann, U. of Edinburgh, 10.12.2008
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Diagram 1; topology 4s Diagram 2; topology 4s Diagram 3; topology 4s Diagram 4; topology 4s

Diagram 5; topology 4t Diagram 6; topology 4t Diagram 7; topology 4t Diagram 8; topology 4t
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The Born cross-section is:

~

Electroweak Born and 1-loop contributions

dgéw = Z‘z (Ts+ Tt + o)
with
T, = (14cos?6) |1+ 2Rex(s) (v2) + [x(s)|? (1 +0%)°] + 2cos 0 [2Rex(s) + [x(s)[? (40?)]
Ty = z((11+_ “'C(ffe {1+ x(®) +Rex(s)] (1 +v7) +x(t)Rex(s) [(1+v7)* + 40°] },
T, = 2&?2222 {1+2x(1) (1 + %) +x(0)? [(1 +0%)? + 40%]}

" (1-— 5089)2 [1 —x() (1 B /U2>}2.

We choose the following conventions:

v = 1-—4s2,
GFM% S
xX(s) = R ,
\/587T048—MZ—|—’LM2FZ
Gp M2 t
X(t) = =~

V2 8rat — M2
N %
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Among the quantities o, G, s>, My there are only three independent, and I'; is
predicted by the theory as well.

The phrasing effective Born cross-section means here that we use, besides a, the following
input variables:

s2 = 0.23,

Mz = 91.1876 £ 0.0021 GeV,

'y, = 249524 0.0023 GeV,

Gr = (1.16637 £ 0.00001) x 107° GeV 2.
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Ratio of electroweak to QED Bhabha scattering cross-section at large angles (up) and small
angles (down) as a function of /s.
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25 Bhabhascattering

Tew

20+ 0 QED
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0.50¢

045L | TTTrmmeecmcoemeeseooooooeieooooo
500 1000 1500 2000 2500 3000

Vs

Ratio of electroweak to QED Bhabha scattering cross-section at large angles in the energy
ranges of LEP1/GigaZ (up) and ILC (down).
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/Table 2:

the cms-energy.

6m: largest relative deviation in per mille.

Mz =91.16 GeV, m, = 150 GeV, My =100 GeV.

Upper rows: DZ, lower rows: H.

/5 (GeV) | 60 89 91.16 93 200
o

15° 129.6 6511 57.93 49.00 11.82

129.6  65.11 57.93 49.00 11.82

45° 1451 1376 1.755 .4833 11.67

1451 1377 1.756 .4837 11.68

60° 4303 6124 1.125 .2697 .03075

4305 6129 1.126 .2699 03077

75° A717 3627 8718 .2232 01072

1718 .3630 .8720 .2233 .01072

90° 08873 2768 .7790 .2088 .004862

08876 .2769 .7787 .2087 .004855

105° | .05917 .2690 .8082 .2157 .002858

05918 .2690 .8074 .2157 .002853

120° | .04906 .3053 .9323 .2429 .002077

04906 .3051 .9309 .2426 .002074

135° | .04671 .3626 1.111 .2838 .001743

04672 .3624 1.109 .2833 .001742

165° | .04839 .4638 1.425 .3590 .001539

04839 4635 1.422 .3584 .001540

bm 06 08 18 20 1.7

The differential Bhabha cross section in nbarn as function of the scatlering angle and

Bhabha scattering

Bardin,Hollik, T.R., Z.PhysikC49(1991)485
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KI'he 1991 result is yet the state of the art in e.g. the programs ZFITTER and BHWID
Now, such calculations of O(1000) diagrams are better than to 10 digits.

-

Results: Numerical comparison in all f f

~N

Bhabha e et — e e () at LC: /s = 500 GeV, Fnax(Ysoft) = 1£05

do do

cos ¢ (7655 Born  (PP) [3657) 0(03) —BomsQEDsverkssonr | CTOUP
—0.9999 | 0.21482 70434 05632 5 0.14889 12125 78083 7 afTALC
~0.9999 | 0.21482 70434 05632 6 0.14889 12189 28404 0 FeynArts
—0.9 0.21699 88288 10920 5 0.19344 50785 26863 6 alTALC
~0.9 0.21699 88288 10920 0 0.19344 50785 26862 2 FeynArts
~0.9 0.21699 88288 41513 1 0.19344 50785 62637 9 me = 0
10.0 0.59814 23072 50330 3 0.54667 71794 69423 1 aiTALC
10.0 0.59814 23072 50329 4 0.54667 71794 69421 8 FeynArts
10.0 0.59814 23072 88584 4 0.54667 71794 99961 4 me = 0
0.9 0.18916 03223 32270 6 - 10% | 0.17292 83490 66507 2 - 103 | aiTALC
10.9 0.18916 03223 32270 6 - 103 | 0.17292 83490 66508 0 - 103 | FeynArts
0.9 0.18916 03223 31848 5 - 10% | 0.17292 83490 613474 - 10 | m. = 0
10.9999 | 0.20842 90676 461429 - 10° | 0.19140 17861 113416 - 10° | afTALC
10.9999 | 0.20842 90676 46436 4 - 10° | 0.19140 17861119790 -10° | FeynArts

Thanks to T. Hahn, numbers supplied with FeynArts + FormCalc + LoopTools

Great independent agreement up to 14 digits! : limit in double precision
Previous agreement with FeynArts: 11 digits hep-ph/0307132, SANC: 10 digits hep-ph/0207156

J

-

Zinnowitz, 28/04/2004

A. Lorca —Automatization and width effects with aITALC

~

E.
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/ ZFITTER and Higgs physics \

Fortran package ZFITTER for: ete™ — puu, gg,ete”

has been used for many experimental and phenomenological studies.

The perhaps most important applications for the elementary particle physics community
may be found at the webpage of the

LEP electroweak working group LEPEWWG.

The weak one-loop library of ZFITTER is used in the Monte-Carlo [where appropriate].

O
R Auhad_
L L —0.02758+0.00035 |
%% -0.027490.00012 [f§
% % eee incl. low Q° data

e

I 3 ]
2 — —
1 . -
0 1 Excluded \ 7 Preliminary |

30 100 300
m,, [GeV]
See also:

ZFITTER news page at DESY Zeuthen:
\http: / /www-zeuthen.desy.de/theory/research /zfitter/ /
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We will now look for really precise predictions ...

for both
e Small angle Bhabha scattering

e Large angle Bhabha scattering

8002 °ZT°0T ‘4Sinquipg jo 'n ‘uuewsiy ‘|

— why?

1074

G1

— what does it mean?

-
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The physics needs at high energies

ILC, /5 = 90 GeV — 1 TeV

For more details see e.g.:

K. Monig, " Bhabha scattering at the ILC”

talk at Mini-WS on Bhabha scattering, Univ. Karlsruhe, April 2005
/afs/ifh.de/user/m/moenig/public/www/bhabha_ilc.pdf

ILC — Need Bhabha cross-sections with 3—4 significant digits.
Why?
o ILC: ete™ — WHW—, ff with O(10°) events — 10 °

e GigaZ: relevant physics derived from Z — hadrons, "™, the latter with O(10%)
events — 10~ %, the systematic errors (luminosity!) influence this

o ILC:eTe™ — ete™, a probe for New Physics with O(10°) events/year — 10 °

Conclude: will need AL/L ~2 x 1074

The luminosity comes from very forward Bhabha scattering.

-




-

T. Riemann, U. of Edinburgh, 10.12.2008

17
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October 20, 2003

MEMO
Luminosity Measurement via Bhabha Scattering:

Requirements on Position Reconstruction

to Achieve a 10~* Precision

Achim Stahl
DESY, Zeuthen
Achim.Stahl@desy.de

Abstract

This memo is based on Monte Carlo simulations with the BHLUMI
generator of Jadach and Was. It adresses the question how accurately
electrons and positrons have to be reconstructed in the TESLA Lum-
Cal in order to achieve a precision of 10~* on the luminosity measure-
ment.




€1

"SIOJOUI G PUB F UM} SNDO0J [RUY I}

JO [)8Us] [BDOJ ® IOJ UOISAl PIRMIOJ 9Y) JO USISOPAl ATRUIWUIRI] :ET oINSI

92.0mrad _______ 280
82.0 mrad 250
mCal
26.2 mrad
BeamCal
39mrad—— 12

Pole Tip

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

long. distances
LumCal 3050...3250

Pump  3350..3500
BeamCal 3650...3850
L* 4050

Pole Tip

19

T. Riemann, U. of Edinburgh, 10.12.2008



-

T. Riemann, U. of Edinburgh, 10.12.2008

20
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1 Method

Bhabha events are simulated with BHLUMI' in the phase space region of
the TESLA luminosity calorimeter. The simulation is based on a redesign of
the forward region for an {* that allows to place the luminosity calorimeter
behind the ECal endcap. The luminosity calorimeter is called LumCal to
distinguish it from the LAT and LCal of the TDR design. The design is
sketched in fig. 13.

A simple selection is applied to the simulated events (see below). In a
first step the position of the electron and positron on the front face of Lum-
Cal is calculated. The scattering angles are determined from these positions.
The energy of the particles is taken from the tree. In subsequent steps the
position and energy are subjected to systematic misreconstructions. The
change in the number of accepted events with respect to step 1 gives the
systematic error introduced by the respective systematic error. The size of
the effects are varied in order to determine the level which is acceptable in
order to achieve a 10~* precision on the luminosity measurement. The same
event sample is used for all steps so that statistical fluctuations largely cancel.

BHLUMI version 4.04 was used with the following parameters:

Type of generator BHLUMA4
Photon Removal on

Event weights off

Random generator RANMAR
Z°-contribution on

QED matrix elements  from BHLUM4
Vacuum polarisation from ref. 1
center-of-mass energy 250 GeV

min. scattering angle 25 mrad

max. scattering angle 90 mrad
photon infrared cut-off 1074

The following cuts are applied

e energy: E(e*) > 0.8 Fheam
E (6_) > 0.8 Fpeam

e scattering angle of positron: 30 mrad < 8% < 75 mrad

e accollinearity: cos fyeo > 0.98
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Some Kinematics at GigaZ and ILC

Need a cross-section prediction with 5 significant digits.

Perturbative orders:

(9) _ 2x10°3
v

2
(9) — 06x1077
i

Kinematics:

V5 = 90...1000 GeV

¥ = 26...82 mrad
costd ~ 0.999 66...0.996 64
T = 2(1 — B%cosd) > 1.36 GeV2|gigaz,

Conclude:

e t-channel exchange of v dominates everything else

e mZ/s < m2/T < 107°...107"

42.2 GeV2 ‘ ILC500

\o Calculate: 1-loop EWRC + 2-loop QED + corresp. bremsstrahlung
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The 1-loop electroweak corrections (plus some leading higher order terms) are

well-known, with rising technical precision, since about 1988 /91.
Bohm, Denner, Hollik; Bardin, TR 1991 — Fig. 2004 Lorca, TR

2-loop Bhabha scattering: What to be done?

e Calculate:

o = 2—-2) + (2—-3) + (2—4)

o = Born + 1-loop + 2-loop|’
+ |(Born +1-y) + (1-loop + 1-7)|
+ |(Bom +2-9)P

e Do not include: |2-loop|?
(1-loop + 1-7)]°
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/ Status by end of 2004 \

Established: 10> MC programs for LEP, ILC

Introduction to NLLBHA by Trentadue and to BHLUMI by Jadach in:
Proc. of Loops and Legs, Rheinsberg, Germany, 1996

Recent mini-review: Jadach, " Theoretical error of luminosity cross section at LEP”,

hep-ph/0306083 1]

e BHLUMI v.4.04: Jadach, Placzek, Richter-Was, Was: CPC 1997
e see also: Jadach, Melles, Ward, Yost: PLB 1996, thesis Melles 1996 |2]

e NLLBHA: Arbuzov, Fadin, Kuraev, Lipatov, Merenkov, Trentadue: NPB 1997,
CERN 96-01

e SAMBHA: Arbuzov, Haidt, Matteuzzi, Paganoni, Trentadue: hep-ph/0402211

See e.g.: Table 1 of [1] and Figure 3.1 of [2] — Conclude:
The nonlogarithmic O(a?) terms, originating from pure QED radiative 1-loop and from
2-loop diagrams are not completely covered.

They have to be calculated and integrated into the MC programs.

Beware:

Me, Mny, (d —4), B

-
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Offer by drinking-a-beer FritS BerendS, NL, in 1989

Okey, | need
One million Swiss francs
and

five — or ten? — Russians

and | will do this

Until 2003 (i.e. in more than 15 years), there were about a dozen articles in spires with “Bhabha
... two-loop” in the title.
And Frits Berends retired recently.

K Now we have about 30 articles of this kind.

/
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Two Loop Bhabha Scattering

To calculate Bhabha scattering it is best to first compute
ete™ — ™, since it's closely related but has less diagrams.

There are 47 QED diagrams contributing to eTe™ — utpu™.

1IN Dal0g
i frotreo AL
XH1e 1o HQ
o < 15

The Bhabha scattering amplitude can be obtained from
ete™ — uTp~ simply by summing it with the crossed
amplitude (including fermi minus sign).

200C 1s94doo ‘uisg 7 wod} paidepy
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The technical target: photonic and fermionic N; = 1,2 topologies

e e A

—
V2 V3

e The unsolved problem, even in the limit m? << s, t:
The non-planar photonic 2-loop boxes B3

e Finally the photonic corrections were derived from massless case by A. Penin ...

e ...and the n; =1 electron loops V4, B5 by R. Bonciani et al., and later also by
ACGR

e We think we know how to do the non-planar boxes, but it is not easy
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Status 2005

Know the constant term (m, = 0)

from 2-loop Bhabha scattering

A. Penin, Two-Loop Corrections to Bhabha Scattering, hep-ph/0501120 v.3, — PRL

Transform the massless 2-loop results of Bern, Dixon, Ghinculov (2002) with InfraRed
(IR) regulation by D = 4 — 2¢ into the on-mass-shell renormalization with m. — 0 and
IR regulation by \ = m, # 0

Use IR-properties of amplitudes (see Penin):

[A ] Exponentiation of the IR logarithms (Sudakov 1956,...)

[B ] Factorization of the collinear logarithms into expernal legs (Frenkel, Taylor 1976)
[C ] Non-renormalization of the IR exponents (YFS 1961, ....)

Isolate the closed fermion loop contribution (does not fulfil [C]) and add it separately
(Burgers 1985, Bonciani et al. 2005, Penin)

If all this is correct, the constant term in m, is known for the MCs (but the radiative

\one—loops with 5-point functions).
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The diagrams with electrons and photons define an ny = 1 problem.

But there are additional ones with heavier fermions.
So we have to investigate an ny = 2 problem
For self-energies starting with 1-loops, and for vertices and boxes starting with 2-loops:

<8 e
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The n; = 2 contributions have been determined in 2007

e Self-energies are not a two-masses-problem

Krawczyk, Kiihn, Stuart PLB 209 (1988)
e What is really new: the 2-boxes with two different fermions involved

The 8 box-master integrals were identified in ACGR, PRD 71 (2005) [hep-ph/0412164|

V412M2m
\ﬁ/ﬂ\}/
V412M1md

SE312M1md
/412M1m

V412M2md v

% % ‘
B512M2md B512M2m

<< mj} << s,t: Becher,Melnikov JHEP 6 (2007) and ACGR NPB 786 (2007)

<< m?c, s,t: ACGR 0710.5111 — > APP B38 (2007)
and Bonciani,Ferroglia,Penin 0710.4775 (2007)

<<m?,, st ACGR 0711.3847 — > PRL 100 (2008)

e 2-vertices are known (for m? = m7 and m7 << m%): G. Burgers PLB 164 (1885), Kniehl,

~
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The Box Corrections

The contribution of the renormalized two-loop box diagrams of class 2e is given by

do.2e><tree ()52 1

1
0 _ 5 gAA%extree(S’t) 4+ ZAAgextree(S’t)

Here the auxiliary functions can be conveniently expressed through three independent form
factors Bl(zf)(x, y), where i = A, B, C,

AT (s ) = F2YC QFRe| BY (s,) + BUy(ts) + Boy(ut) — Biy(u,s) |,
- i J
Agextree(87t) — F€2 Z Q?f Re B](g%?f(sat) -+ Bg?,)f(t,S) — B](323f(u7t) + Béi)f(ua 3) .
- i J

The normalization factor is

m2me’® \ °
Fe=|—5—
v

-




800C'CI 0T ‘ydinquipg jo ' ‘uuewsiy “J

ce

~

How to evaluate the N; = 2 diagrams?

We did it in 2 ways

e Decompose the 2-loop integrals to master integrals, solve them.
Here: In the limit m; << m3} << s,t,u
This was done in hep-ph/07042400v2 — ACGR, NPB 786 (2007)

e Alternatively, rewrite the 2-loop integrals as dispersion integrals.
Decompose the loop integrals afterwards into master integrals
The master integrals are simpler, of one-loop type, but the numerical dispersion
integration remains then.

Advantages of the dispersion integrals:
e get easily the range m2 << m?%,s,t,u

e method applies also to hadronic insertions

-
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Dispersion Integrals

Juv Jua 2 af _ o BY 1] 5 98v
q2+z’5_>q2_|_i(5<qg q CJ) had(Q)q2+i5

Y

the once-subtracted dispersion integral

q2 * dz Im Hhad(z)

Myaa(q?) = =L i |
had (¢°) T Jamz 2 @2 —2+10

Finally, one relates ImIl;,q to the hadronic cross-section ratio R} .4,

o X Og+e— —ha rons(z)
Imilaa (=) =~ Rua(2) = — 3 =758

For heavy fermion insertions, we have instead of F;,.q(2):

R¢(z) = Q?C’f(l + Zm?/z)\/l —4m3/z,

Replacing the II;,.4(¢*) in a vertex or in box diagram by the z-dispersion integral and
exchanging the [ d*k with the [ dz creates one-loop diagrams with a subsequent

z-integration.

N

/
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The kernel functions for the dispersion integrals

Aa(z) = Aajoy(z)+
ax [
A%(]Z)d(ﬂf“) = %gll

V2e($) + VVQrest (CC)
/ dz R(z) Ky (x +1i6; 2)

e Z

{5t (Graz)m(-0)-3(1+5) [a-w (1+9)]}

Bi(aj,y)[loo g F)

M2 zZ

Kboa:,z'(aj -+ 7’57 Y+ 7’57 Z)

The Kpo, i(z,y; 2) are determined as linear combinations of one-loop integrals with mass

/
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/ Using Rhad
This is a topic by itself, because R,  is basically unpublished.

N.N.1:
Fuer R(s) mit Fehlern, Kontinuum + Resonanzen haben wir nur unsere interne

Arbeitsversion.

N.N.2:
This procedure is a follow up of complicated programs, which unfortunately

do not exist in a really user-friendly form.

N.N.3:
I understand that for your problem it is probably too

cumbersome (and time-consuming) to use the data.

N.N.4:
es hat etwas gedauert, bis ich in meinen alten Verzeichnissen auf einer
1994er Vax am MPI fuendig geworden bin.

So, finally, we might reproduce the old estimates given for the vertex dispersion relation
in Kniehl, Krawczyk, Kiihn, Stuart (1988) — finally we have numerics, but with larger

erors than necessary /




800¢°CT 0T '43inquipg jo °) ‘uuewsly |

o¢

-

100

= 10
3
ad

1

- Intermediate s,

Hagiwara et al.

4>

Large s,

| . .
1 Low s expansion, Davier et al.
I

WF/»

Harlander & Steinhauser

1 100
S [GeVz]

10000

The implementation of Ry.q used for the numerical evaluation of irreducible two-loop

corrections.

/
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100

Rhad’

———— R

Burkhardt
update

S [GeVZ]

and

A comparison of the parametrizations from

[Burkhardt:1981jk]|

[rintpl:2008AA]

/
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Final formula and results

We distinguish 3 different categories of 2-loop contributions:

e the irreducible 2-loop vertices

e the ’'rest’: irreducible vertices and boxes plus 2-loop boxes

_ 0 ) |
do _ c/ gpPhaa(x) 1 gy
dQ 4M72r z t—z

clloo L{Rhad(z) [F2(Z) + F3(2) In|1 — 2”

Mz 2 (s —2)
Ru(s) | Fa(s) + Fa(s) n1 = =|| |
Ry (s)

S

O R ()

T

S

{Fg(s) m( T 1) —6CaF(s)

C

with ¢ = a*/(7%s) and Ry (s) = 0(s — 4M?2) Rpaa(s).

(1)
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Fi(z) = %{95(s,t)1n<mi) n [—z2<§+%+2t%> —|—z(4—|—4§—|—2§) +%——|—6—

t z 3 t 1 22 s 11 of t
+ 5s—|—4t] ln(——>—|—s(———|—§) ln(l—|——>—|—[———|—22(1—|—t)—zs—2t} In (——)

2 s

t2 32 2

- 35 () F 2 s+—t] 1n2<1+;>+[%—2z(1+i)

S

2 2

(=D m+ Y e[S Z s s )] et (D] - [S42Z 43 (4 0)] w(2)

2 t2 2 2

[2Z 4 <1+S) 4= -2> 4 Ht]g +[ (1+2 n ) (t

— — —4z -)—4——2— 45— — —+—)—2z(-

¢ ¢ 9 |52 2 1 5
2 2

- [z2<§+%)+2z<1+2>+s+27]ln(s)ln(l—l—s)-l-[%—i-élz(l-l-;)
X 1n(§)1n(1—§)—[z2(§+2t%+%)—2z( +2S+2
+ [?—2z(1+§>+2§+83+4£+7t} In(1-2) n(1+ ) [ +4z
() e e (D[S
x L (1—|—§)}—|—46(8,t)1n(f/§) [ln(m2>—|—ln(——>—ln(1—|— -} -1],

and similarly for F5(z) and F3(z).

N——
_|_
® |
+
[\

/N
»
+

i

In(= M?)", e.g. from terms like A(z) In(z/s) or from B(z)Lig(f).

-

The [,,,» dzF;(z) gives from the lower integration bound the logarithmically enhanced terms

s2 5}
-|-2—+5s—|——t}
t 2

t
2
(1-!—;)—%—4(3

t2 s2
)+ = HBst2s
s t

/

14 -

+1)]

+4t]
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Some numerical results

We will now discuss the numerical net effects arising from the Ny = 2 vertex plus box diagrams
(i.e. excluding the pure running coupling effects):

doy  do n do,
dQ  dQ  dQ’

with da /dS2 from Eqn. (1). The expression for the irreducible vertex term do, /dS) derives

directly from
[Kniehl:1988id,webPage:2007x3]

. The doy/dS) is normalized to the pure photonic Bhabha Born cross section doq/dS2:

clao_oz2 §+1+£ 2
Qs \t s/
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_ 2
5L s=1Gev-
_ _ - - ~ N
& 4r =7 ————  photonic
S - —— hadronic
m 3 %/// ---------- muon
o o IPEPE - €electron
< | | o--- total non-photonic
* 2
(3¢

o | el
A . - h

-

10° * do,/d o,

(o))

D

N

~

photonic

hadronic

muon

electron

total non-photonic

e ——

Two-loop Ny = 2 vertex and box corrections do to Bhabha scattering in units of 10~ ?doy at
meson factories, /s =1 GeV (a) and /s = 10 GeV (b).

/
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10° * do /da,

N Wbk 01O

=
o © O

o

T

T

photonic
hadronic
muon
electron

total non-photonic

—
—_—
—
—_
—_
—_
.
—_
—_—
—_

s*=100Gev -

-
—
.-
.
.-

20

=
o

10° * do /da,
o

KN
o

-20

photonic

hadronic

muon

electron

total non-photonic

! | ! | !

|

!

s"%= 500 GeV

I R T—

60
0

80 100 120 140 160

Two-loop Ny = 2 vertex and box corrections do to Bhabha scattering in units of 10~ ?doy at
ILC energies of v/s = 100 GeV (GigaZ option) and /s = 500 GeV.

/
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photonic
muon —
electron

total non-photonic

hadronic | and 11

3 *
10 dozlchW

20 40 60 80 100 120 140 160
O

Two-loop corrections to Bhabha scattering at \/s = Mz, normalized to the effective weak Born

Q:ross section. /
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Summary

We determine the N/ = 2 contributions to 2-loop Bhabha scattering, including the
hadronic corrections

They are small, but non-negligible at the scale 1073 (— No LEP influencing)

Agreement for m? << m? << s,{,u with:

" Two-loop QED corrections to Bhabha scattering”
Thomas Becher, Kirill Melnikov, arXiv:0704.3582 [hep-ph], JHEP

Agreement for m? << m?, s, ¢, u with:
” Two-Loop Heavy-Flavor Contribution to Bhabha Scattering”,
Roberto Bonciani, Andrea Ferroglia, Sacha Penin, arXiv:0710.4775v3 [hep-ph]

This year also for hadronic corrections with Kuehn, Uccirati

To be evaluated yet:
— 1-loop diagrams with real photon emission, interfering with real (Born)
radiation, including 5-point functions

Also: — Real heavy pair emission corrections

Both items were studied already by Andrei Arbuzov, Kuraev, Shaitchatdenov (1998,

/

small photon mass)
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The dispersion master integrals for the Ny = 2 contributions

There are three box kernel functions, depending on m.,my, s, t.with m? << z = m7,s,t.
They are IR-divergent.
The eight master integrals for the 2-loop boxes are:

p1 Ps
m

5 M
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FOOL
><Q 1 0

2d %

Classes of Bhabha-scattering 2-loop diagrams containing at least one fermion loop.
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KI'he 4 direct and 4 crossed fermionic 2-loop box diagrams have to be combined with \
other diagrams for an IR-finite contribution:
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After combining the 2-loop terms with the loop-by-loop terms and with soft real
corrections:

daNNLO N da,l;ILO B dO_NNLO,e N ZQQ dJNNLO;f2 N ZQél dONNLO’f4
d§ aQ dQ TS I dQ
f#e f#e
doNNLO,2f

2 2

+ ) Q3,7

dS)
flaf?#e




