Quantum Chromodynamics lecture III

Sven-Olaf Moch

Universität Hamburg & DESY, Zeuthen

Belgian Dutch German summer school (BND 2012), Bonn, Sep 23, 2012

Sven-Olaf Moch

Quantum Chromodynamics – p.1

Plan

- Introduction to QCD Friday, September 21, 2012
- QCD at work: infrared safety, factorization and evolution Saturday, September 22, 2012
- Higgs boson production Sunday, September 23, 2012
- Gauge boson production and QCD jets *Monday, September 24, 2012*
- Top quark production *Tuesday, September 25, 2012*

Hunt for the Higgs

• Higgs candidate event ($2e 2\mu$ final state) in LHC run at $\sqrt{s} = 7$ TeV

Challenges

• Solve master equation

new physics = data – Standard Model

- LHC explores the energy frontier
 - searches require understanding of SM background
 - theory has to match or exceed accuracy of LHC data

Challenges

• Solve master equation

new physics = data – Standard Model

- LHC explores the energy frontier
 - searches require understanding of SM background
 - theory has to match or exceed accuracy of LHC data

Higgs cross section

Cross section for Higgs production at the LHC

Dominant channels for Higgs boson production LHC Higgs XS WG '10

Higgs discovery at LHC

Atlas coll. July 2012

- Higgs mass in the range $m_H = 125 \text{ GeV}$
 - Higgs search driven predominantly by $gg \rightarrow H$
 - current range of excluded Higgs masses at Tevatron optimistic and consequences for LHC interesting

QCD factorization

 $\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$

- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

gg-fusion

Effective theory

- Integration of top-quark loop (finite result)
 - decay width $H \rightarrow gg$ ($m_q = 0$ for light quarks, m_t heavy)

$$\Gamma_{H \to gg} = \frac{G_{\mu} m_H^3}{64 \sqrt{2} \pi^3} \alpha_s^2 f\!\left(\frac{m_H^2}{4m_t^2}\right)$$

- Effective theory in limit $m_t \to \infty$; Lagrangian $\mathcal{L} = -\frac{1}{4} \frac{H}{v} C_H G^{\mu\nu a} G^a_{\mu\nu}$
 - operator $HG^{\mu\nu a} G^a_{\mu\nu}$ relates to stress-energy tensor
 - additional renormalization proportional to QCD β-function required Kluberg-Stern, Zuber '75; Collins, Duncan, Joglekar '77

QCD corrections to ggF

- Hadronic cross section $\sigma_{pp \to H}$ with $\tau = m_H^2/S$
 - renormalization/factorization (hard) scale $\mu = \mathcal{O}(m_H)$

$$\sigma_{pp \to H} = \sum_{ij} \int_{\tau}^{1} \frac{dx_1}{x_1} \int_{x_1}^{1} \frac{dx_2}{x_2} f_i\left(\frac{x_1}{x_2}, \mu^2\right) f_j\left(x_2, \mu^2\right) \hat{\sigma}_{ij \to H}\left(\frac{\tau}{x_1}, \frac{\mu^2}{m_H^2}, \alpha_s(\mu^2)\right)$$

• Partonic cross section $\hat{\sigma}_{ij \rightarrow H}$

$$\hat{\sigma}_{ij \to H} = \underline{\alpha_s^2 \Big[\hat{\sigma}_{ij \to H}^{(0)} + \alpha_s \hat{\sigma}_{ij \to H}^{(1)} + \alpha_s^2 \hat{\sigma}_{ij \to H}^{(2)} + \dots \Big]}$$

NLO: standard approximation (large uncertainties)

Radiative corrections in a nutshell

- Leading order
 - partonic cross section $x = \tau/x_1$ $\hat{\sigma}^{(0)}_{gg \to H} = \delta(1-x)$
- Next-to-leading order
 - virtual correction (time-like kinematics) (infrared divergent; proportional to Born)
 - dimensional regularization $D = 4 2\epsilon$

$$\hat{\sigma}_{gg \to H}^{(1),v} = C_A \frac{\alpha_s}{4\pi} \,\delta(1-x) \,\left(\frac{\mu^2}{m_H^2}\right)^\epsilon \,\left(-\frac{2}{\epsilon^2} + 7\,\zeta_2 + \mathcal{O}(\epsilon)\right)$$

additional contribution from renormalization of effective operator

$$\alpha_{s}^{\text{bare}} = \alpha_{s}^{\text{ren}} \left\{ 1 - \frac{\beta_{0}}{\epsilon} \frac{\alpha_{s}^{\text{ren}}}{4\pi} + \mathcal{O}(\alpha_{s}^{2}) \right\}$$
massless tadpoles vanish in dimensional regularization
$$g_{1} = 0$$

Next-to-leading order

• add real and virtual corrections $\hat{\sigma}_{gg \to H}^{(1)} = \hat{\sigma}_{gg \to H}^{(1),r} + \hat{\sigma}_{gg \to H}^{(1),v}$

• collinear divergence remains splitting functions
$$P_{gg}^{(0)}$$

 $\hat{\sigma}_{gg \to H}^{(1)} = \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{m_H^2}\right)^{\epsilon} \left\{ \frac{1}{\epsilon} C_A \left(\frac{8}{1-x} + \frac{8}{x} - 8(2-x+x^2) + \frac{22}{3}\delta(1-x)\right) - \frac{1}{\epsilon} n_f \frac{4}{3}\delta(1-x) + C_A \left(16\frac{\ln(1-x)}{1-x} + \left(\frac{22}{3} + 8\zeta_2\right)\delta(1-x) - 16x(2-x+x^2)\ln(1-x) - 8\frac{(1-x+x^2)^2}{1-x}\ln(x) - \frac{22}{3}(1-x)^3\right) + \mathcal{O}(\epsilon) \right\}$

- Structure of NLO correction
 - absorb collinear divergence $P_{gg}^{(0)}$ in renormalized parton distributions

$$\hat{\sigma}_{gg \to H}^{(1),\text{bare}} = \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{m_H^2}\right)^{\epsilon} \left\{\frac{1}{\epsilon} 2P_{gg}^{(0)}(x) + \hat{\sigma}_{gg \to H}^{(1)}(x) + \mathcal{O}(\epsilon)\right\}$$
$$g^{\text{ren}}(\mu_F^2) = g^{\text{bare}} - \frac{\alpha_s}{4\pi} \frac{1}{\epsilon} P_{gg}^{(0)}(x) \left(\frac{\mu^2}{\mu_F^2}\right)^{\epsilon}$$

• partonic (physical) structure function at factorization scale μ_F

$$\hat{\sigma}_{gg \to H} = \delta(1-x) + \frac{\alpha_s}{4\pi} \left\{ \hat{\sigma}_{gg \to H}^{(1)}(x) - \ln\left(\frac{m_H^2}{\mu_F^2}\right) 2 P_{gg}^{(0)}(x) \right\}$$

Inclusive cross section

Apparent convergence of perturbative expansion

- NNLO corrections still large
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
- improvement through complete soft N³LO corrections S.M., Vogt '05 or NNLL resummtion Catani, de Florian, Grazzini, Nason '03, Ahrens et al. '10
- Perturbative stability under renormalization scale variation

Resummation

• Higgs cross section $\hat{\sigma}_{gg \to H}$ with $x = \frac{M_H^2}{s}$ ($x \simeq 1$ close to threshold)

$$\alpha_s^n \left(\frac{\ln^{2n-1}(1-x)}{1-x}\right)_+ \longleftrightarrow \alpha_s^n \ln^{2n}(N)$$

Recall large double logarithms at NLO

$$\begin{split} \hat{\sigma}_{gg \to H}^{(1)} &= \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{m_H^2}\right)^{\epsilon} \left\{ \\ &\frac{1}{\epsilon} C_A \left(\frac{8}{1-x} + \frac{8}{x} - 8(2-x+x^2) + \frac{22}{3}\delta(1-x)\right) - \frac{1}{\epsilon} n_f \frac{4}{3}\delta(1-x) \\ &+ C_A \left(16\frac{\ln(1-x)}{1-x} + \left(\frac{22}{3} + 8\zeta_2\right)\delta(1-x) - 16x(2-x+x^2)\ln(1-x) \\ &- 8\frac{(1-x+x^2)^2}{1-x}\ln(x) - \frac{22}{3}(1-x)^3\right) + \mathcal{O}(\epsilon) \right\} \end{split}$$

Threshold resummation to all orders with standard technology

$$\hat{\sigma}_{gg \to H}^{N} = (1 + \alpha_s g_{01} + \alpha_s^2 g_{02} + \ldots) \cdot \exp(G^N) + \mathcal{O}(N^{-1} \ln^n N)$$

- Cross section at LHC with scale variation: fixed order predictions (left) and resummed perturbation series (right)
 - NNLO corrections

Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03

• NNLL resummation

Catani, Grazzini, de Florian, Nason '03, Ahrens et al. '10

Total Higgs cross section and resummation

 Cross section at LHC with scale variation: fixed order predictions (left) and resummed perturbation series (right)

- NNLO corrections Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
- NNLL resummation (lots of activity in the last years) Catani, Grazzini, de Florian, Nason '03, Ahrens et al. '10

gg fusion (fully exclusive)

- Bin-integrated Higgs rapidity distribution including decay $H
 ightarrow \gamma \gamma$
 - QCD corrections up to NNLO Anastasiou, Melnikov, Petriello '05
 - fast parton level Monte Carlo HNNLO Catani, Grazzini '07

• Impact of kinematical cuts on higher order corrections (LHC $\sqrt{s} = 14$ TeV)

- left: Higgs mass $M_h = 125$ GeV, no cuts on p_t of jets
- right: Higgs mass $M_h = 165$ GeV and veto on jets with $p_t > 40$ GeV $(k_t \text{ algorithm for jet reconstruction with jet size <math>D = 0.4$)

PDF dependence of gg-fusion cross section at LHC

- PDFs uncertainty
 - PDFs (gluon at large x) largest single source of uncertainty
 - PDF uncertainty estimates by LHC Higgs XS WG too optimistic
- Linear addition of errors
 - PDF uncertainty and error due to effective theory: $\Delta \sigma = \Delta \sigma_{PDF} + \Delta \sigma_{EFT}$

Vector-boson fusion

• Second largest rate at LHC (*WWH* coupling)

Signatures

- WW, ZZ fusion \longrightarrow Higgs is color singlet
 - two hard (forward) tagging jets (visible in detector)
 - no (or small) hadronic activity between tagging jets
 - color connection between forward jet and proton remnant
 - Higgs decay in the central rapidity region

Perturbative QCD corrections

Where is the hadronic activity ?

 QCD radiation predominantly in direction of incoming partons (angular ordering)

Perturbative QCD corrections

Where is the hadronic activity ?

 QCD radiation predominantly in direction of incoming partons (angular ordering)

NLO QCD radiative corrections

Perturbative QCD corrections

Where is the hadronic activity ?

 QCD radiation predominantly in direction of incoming partons (angular ordering)

 NLO QCD corrections factorize (color conservation eliminates *t*-channel gluon in squared ME)

Exact factorization

- Deep-inelastic scattering building block of cross section with structure functions F_1 , F_2 and F_3
- Exact factorization at NLO: so-called strucure function approach Han, Valencia, Willenbrock '92
- Structure function approach is NOT exact at NNLO in QCD
 - but can be still considered a good approximation, holds to $\mathcal{O}(1\%)$
 - NNLO QCD corrections to F_1 , F_2 and F_3 long known Kazakov, Kotikov '88; Zijlstra, van Neerven '92; S.M., Vermaseren '99

VBF cross section at LHC

Bolzoni, Maltoni, S.M., Zaro '11

- VBF at NNLO
- QCD corrections at second order small
 - apparent convergence
- NNLO results very stable at 2% against QCD scales variation (uniformly over the full mass range)
- Significant reduction of theoretical un certainty

Scale stability at NNLO

- VBF cross sections displays very good scale stability at NNLO over large range for $\mu_R = \mu_F$ preferred (minimal sensitivity)
- Scale choice $\mu_R = \mu_F \simeq Q$ preferred (minimal sensitivity)

PDF dependence of VBF cross section at LHC

- PDF uncertainty
 - moderate for small Higgs masses $\mathcal{O}(\pm 2\%)$
 - increasingly larger for heavy Higgs bosons up to $\mathcal{O}(\pm 10\%)$

Higgs strahlung

WH production (fully exclusive) Ferrara, Tramontana, Grazzini '11

- Scale dependence at the 1% level both at NLO and NNLO
- LHC $\sqrt{s} = 14$ TeV: lepton $p_t > 30$ GeV, |y| < 2.5 and $p_t^{miss} > 30$ GeV; require $p_t^W > 200$ GeV; (cone alg. with R = 1.2)
 - one fat jet with $p_t > 200$ GeV (and $b\bar{b}$ -pair), |y| < 2.5; no other jet with $p_t > 20$ GeV and |y| < 5

LHC measurements

Atlas coll. July 2012

• Measured $H \rightarrow \gamma \gamma$ decay mode (left)

Signal strength (μ)

- Signal strength of all analyzed decay modes normalized to SM expectation (right)
- Agreement with SM for $H \rightarrow ZZ$; excess of $H \rightarrow \gamma\gamma$ (new physics ?)

Theory uncertainty

- Theory uncertainty of SM expectations revisited Baglio, Djouadi, Godbole '12
 - ratios $R_{XX} = \sigma_{H \to XX}^{\text{obs}} / \sigma_{H \to XX}^{\text{SM}}$
 - larger PDF uncertainties and linear addition of errors
- Excess of $H \rightarrow \gamma \gamma$ due to optimistic error estimates by Atlas and CMS

Summary (part III)

Standard Model

- Successful experimental program at LHC relies crucially on detailed understanding of Standard Model processes
- QCD at work
 - illustration of factorization, infrared safety and evolution for $gg \rightarrow H$
 - resummation of large logarithms near threshold

Higgs measurements

- Precision predictions for Higgs production at LHC available
 - radiative corrections (higher orders) important
 - essential to control theory uncertainties
 - non-perturbative parameters currently source of largest differences for Higgs cross section predictions