Tutorial II

Belgian Dutch German summer school (BND 2012)
The amplitude for electron-positron annihilation and subsequent quark-anti-quark production is given to leading order by the following diagram:

The photon has momentum $q,+q^{2}=Q^{2}>0$ and the quark and anti-quark carry the momenta $p, p^{2}=0$ and $p_{1}, p_{1}^{2}=0$.

- Calculate the total cross section for this reaction.

$$
\begin{equation*}
e^{-}+e^{+} \rightarrow \gamma(q) \rightarrow \mathrm{q}(p)+\overline{\mathrm{q}}\left(p_{1}\right) . \tag{1}
\end{equation*}
$$

Next, we want to consider the radiative corrections in Quantum Chromodynamics to order α_{s}. The amplitude for electron-positron annihilation and production of a quark-anti-quark pair and additional radiation of a gluon with momentum k,

$$
\begin{equation*}
e^{-}+e^{+} \rightarrow \gamma(q) \rightarrow \mathrm{q}(p)+\overline{\mathrm{q}}\left(p_{1}\right)+\mathrm{g}\left(p_{2}\right), \tag{2}
\end{equation*}
$$

is given by the following diagrams:

- This process can be decribed with the help of the scaling variable $x=(2 p \cdot q) / Q^{2}$. What is the physical interpretation of x ?
- Calculate the cross section $d \sigma_{T}$ for this reaction for transversely polarized photons as a function of the scaling variable $x=(2 p \cdot q) / Q^{2}$ and the photon momen$\operatorname{tum} q^{2}=Q^{2}$.
- Why is the result divergent in the infrared?
- What is the role of the following set of diagrams?

Hint: The squared amplitude \mathcal{A} for the reaction $\gamma(q, \mu) \rightarrow \mathrm{q}(p)+\overline{\mathrm{q}}\left(p_{1}\right)+\mathrm{g}\left(p_{2}, \mu_{1}\right)$ is given by

$$
\begin{align*}
& \sum_{\text {spins }}|\mathcal{A}|^{2}=\left(e^{2} g_{s}^{2} C_{F}\right) g^{\mu v} g^{\mu_{1} \mu_{2}} \tag{3}\\
& \left\{\operatorname{tr}\left(\not p_{1} \gamma_{\mu}\left(\not p+\not p_{2}\right) \gamma_{\mu_{1}} \not p \gamma_{\mu_{2}}\left(\not p+\not p_{2}\right) \gamma_{v}\right) \frac{1}{\left(p+p_{2}\right)^{4}}\right. \\
& +\operatorname{tr}\left(\not p_{1} \gamma_{\mu_{1}}\left(\not p_{1}+\not p_{2}\right) \gamma_{\mu} \not p \gamma_{v}\left(\not p_{1}+\not p_{2}\right) \gamma_{\mu_{2}}\right) \frac{1}{\left(p_{1}+p_{2}\right)^{4}} \\
& -\operatorname{tr}\left(\not p_{1} \gamma_{\mu_{1}}\left(\not p_{1}+\not p_{2}\right) \gamma_{\mu} \not p \gamma_{\mu_{2}}\left(\not p+\not p_{2}\right) \gamma_{v}\right) \frac{1}{\left(p+p_{2}\right)^{2}\left(p_{1}+p_{2}\right)^{2}} \\
& \left.-\operatorname{tr}\left(\not p_{1} \gamma_{\mu}\left(\not p+\not p_{2}\right) \gamma_{\mu_{1}} \not p \gamma_{v}\left(\not p_{1}+\not p_{2}\right) \gamma_{\mu_{2}}\right) \frac{1}{\left(p+p_{2}\right)^{2}\left(p_{1}+p_{2}\right)^{2}}\right\} .
\end{align*}
$$

Here, e is the electro-magnetic charge, $C_{F}=\left(N_{c}^{2}-1\right) /\left(2 N_{c}\right)$ arises from the quark color charge and g_{s} is the strong coupling constant.
The differential phase space for the reaction in Eq.(2) in x is in D-dimensions given by

$$
\begin{equation*}
d \mathrm{PS}=\frac{1}{2} \frac{1}{(4 \pi)^{D / 2-1}} \frac{\left(Q^{2}\right)^{D / 2-2}}{\Gamma(D / 2-1)}(1-x)^{D / 2-2} \int_{0}^{1} d y[y(1-y)]^{D / 2-2} \tag{4}
\end{equation*}
$$

where the relation of the scattering angle θ in the center-of-mass system for q is related to y as $y=\frac{1}{2}(1+\cos \theta)$.

It is advantageous to automatize the calculation. A FORM script is available on the web-page of this lecture and under www-zeuthen.desy.de/ ${ }^{\sim}$ moch.

