Ausgabe: 20.6.2000 Abgabe: 27.6.2000

Übung zur Vorlesung "Statistische Methoden der Datenanalyse" H. Kolanoski (kolanoski@ifh.de) – SS 2000

Blatt 5

Aufgabe 12: Geradengleichung (10 Punkte)

Eine Teilchenspur geht durch 2 flache Detektoren, die jeweils eine Projektion des Durchstosspunktes der Teilchenbahn in der x-z-Ebene messen. Die Detektoren stehen bei z_1 und z_2 parallel zur x-Achse. Es werden werden Durchstosspunkte x_1 , x_2 mit den Auflösungen $\sigma_1=100~\mu\mathrm{m},~\sigma_2=150~\mu\mathrm{m}$ gemessen, die z-Auflösung sei vernachlässigbar.

- a) Bestimmen Sie die Teilchenbahn als eine Gerade, die durch die Messpunkte geht.
- b) Bestimmen Sie die Kovarianzmatrix von Achsenabschnitt und Steigung.
- c) Bestimmen Sie die Transformation, die diese Kovarianzmatrix diagonal macht.
- d) Bestimmen Sie den Fehler bei der Bestimmung des Durchstosspunktes bei $z=z_0$, allgemein und für die Werte (in cm):

$$z_0 = -5$$
, $z_1 = 5$, $z_2 = 8$, $x_1 = 2.20$, $x_2 = 2.91$

Aufgabe 13: Gewichtete Mittelwertbildung (5 Punkte)

Wir haben in Abschnitt 4.2 für den Fall einer Stichprobe x_i , i = 1, ..., n mit gleichen Varianzen $\sigma_i = \sigma$ gezeigt, dass die Mittelwertbildung für das arithmetische Mittel am effektivsten ist.

- a) Leiten Sie eine Formel für den effektivsten Mittelwert her, wenn die σ_i im allgemeinen unterschiedlich sind ('gewichtetes Mittel').
- b) Gegeben ist eine Grundgesamtheit mit Mittelwert μ und Varianz σ^2 . Bestimmen Sie die Mittelwerte und Varianzen von m Stichproben mit jeweils unterschiedlichem Umfang n_j , $j=1,\ldots,m$ und den Mittelwert der Mittelwerte und dessen Varianz und Standardabweichung.

Aufgabe 14: Signal und Untergrund (5 Punkte)

Bei einer Zählratenmessung hat man in der Regel Untergrund zu berücksichtigen. Die gemessene Zählrate N ergibt sich aus Signal N_S und Untergrund N_U :

$$N = N_S + N_U$$

Die Untergrundrate kann man häufig durch eine getrennte Messung (zum Beispiel leeres Target bei einem Streuexperiment) bestimmen. Bestimmen Sie eine optimale Aufteilung der insgesamt zur Verfügung stehenden Zeit T für die 'Volltarget'- und 'Leertarget'-Messung (die optimale Aufteilung sollte den Fehler der interessierenden Messung von dN_S/dt minimieren).