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Why quantum computing

> Quantum Biotechnology, N. Mauranyapin, et.al, arXiv:2111.02021

> Emerging quantum computing algorithms for quantum chemistry, M. Motta, et.al.,

arXiv:2109.02873

> Quantum Theory Methods as a Possible Alternative for the Double-Blind Gold Standard of

Evidence-Based Medicine: Outlining a New Research Program, D.k Aerts, et.al.,

arXiv:1810.13342

> Quantum Battery with Ultracold Atoms: Bosons vs. Fermions, Tanoy Kanti Konar, et.al.,

arXiv:2109.06816

> Hybrid Quantum-Classical Algorithms for Loan Collection Optimization with Loan Loss

Provisions, J. Tangpanitanon, et.al, arXiv:2110.15870

> A Quantum Natural Language Processing Approach to Musical Intelligence E. Miranda,

et.al., arXiv:2111.06741
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> Hybrid Quantum-Classical Algorithms for Loan Collection Optimization with Loan Loss

Provisions, J. Tangpanitanon, et.al, arXiv:2110.15870

> Developing a Framework for Sonifying Variational Quantum Algorithms: Implications for

Music Composition, Paulo Vitor Itaboraí, Peter Thomas, Arianna Crippa, Karl Jansen, Tim

Schwägerl, María Aguado Yáñez, arXiv: 2409.07104
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Why a quantum computer

> systems in e.g.

– high energy physics

– chemistry

– biology

– material science

– condensed matter physics

> are quantum systems

”Nature isn’t classical, dammit, and if you want to make a simulation of Nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem because it

doesn’t look so easy.”, R. Feynman, around 1980, see

https://arxiv.org/pdf/2106.10522.pdf

> potential to solve problems very hard or inaccessible for classical computers

→ models with sign problem (topological models, non-zero baryon density, ...)
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Bit versus Qubit

> quantum world: particle–wave duality

electrons behave as waves light behaves as particles
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Bit versus Qubit

> bit: only 2 states 0 or 1 possible

> qubit: 2-level quantum system with state |0〉, or |1〉
→ superposition

|qubit〉 = α|0〉+ β|1〉, α2 + β2 = 1

> realization of qubit: 2-level atom, Josephson junction,

polarized photons, ...

bit: switch on/off qubit: dimmer continuous
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Quantum advantage I: superposition

> qubit = behaves as wave: superposition

> sound wave

• superposition allows

– to store much more information

– to explore a much larger space
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Quantum advantage II: entanglement

> 2 qubits (Q1, Q2) can be entangled→ acting on Q1 influences Q2

– without connection (e.g. no wire)

– over (in principle) arbitrary distances

• 2 photon experiment

– claim proof of entanglement

over O(1000) kilometer
(J. Yin et.al., Nature volume 582, 501 (2020))

• entanglement:

– no classical analogue

– opens completely new possibilities
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Quantum computer: from the outside
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Quantum computer: from the inside

• Shielded to 50,000 times less
than Earth’s magnetic field

• In a high vacuum: pressure is 10 billion
times lower than atmospheric pressure

• Cooled 180 times colder than
interstellar space (0.015 Kelvin)

→ prevent quantum noise

• IBMQ: 433 qubits 2022, >1000 qubits 2023, >4000 qubits 2024
→ 10K to 100K error corrected, parallelized

• Google promise: 1.000.000 qubits 2030, 1000 qubits error corrected
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How to quantum compute

> python programming language

→ company provides quantum libraries

> very convenient setup

→ simulator runs on your local machine

→ hardware usable through quantum cloud service

→ build on reservation system

> documentation, tutorials and examples availabe on website,

e.g. IBM’s textbook: https://qiskit.org/textbook/preface.html

→ you can start now!
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Quantum computing the Heisenberg model

> 1-dimensional Heisenberg model

Heisenberg, W. Zur Theorie des Ferromagnetismus. Z. Physik 49, 619–636 (1928)

H =
∑N

i=1 β [σx(i)⊗ σx(i+ 1) + σy(i)⊗ σy(i+ 1) + σz(i)⊗ σz(i+ 1)] + Jσz(i)

> microscopic description of magnetism

> phase transition from un-magnetized to magnetized phase

> mathematical structure typical for models in Lattice Gauge Theories (LGT)

> very flexible: can use N = 2 or N = 1000 lattice sites

→ can be studied already now on quantum computers
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Variational Quantum Eigensolver (VQE)

> a hybrid quantum/classical variational approach
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Example for a quantum circuit
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Quantum computing the Heisenberg model

> Quantum computing the lowest physical energy using 3 qubits

> Using the exact simulation on laptop

> dashed line exact result

• exact simulation
• find correct result
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Quantum computing the Heisenberg model

> Quantum computing the lowest physical energy using 3 qubits

> On quantum computer: exist quantum noise

⇒ add noise model

• noisy simulation
• fail to find correct result
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Error mitigation and expressivity of quantum circuits

> Quantum computers are noisy: bit-flips in readout process

> analytically correct for readout errors

(L. Funcke, T. Hartung, S. Kühn, P. Stornati,

X. Wang, K.J., arxiv:2007.03663, to appear in PRA)

> dimensional expressivity analysis of quantum circuits

(L. Funcke, T. Hartung, S. Kühn, P. Stornati,

K.J, Quantum 5 (2021) 422)

→ remove superfluous gates

> both methods scale polynomially

⇒ they are efficient

> methods are developed from applications in

fundamental research
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Quantum computing the Heisenberg model

> Mitigate quantum noise through analytical method

on minimal, but maximally expressive circuit

• error mitigated noisy simulation
• find correct result

> develop new methods from basic research (LGT)
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Quantum computing the flight gate assignment problem

> A classical optimization problem: flight gate assignment

(Y. Chai, L. Funcke, T. Hartung, S. Kühn, T. Stollenwerk, P. Stornati, K. Jansen,

arXiv:2302.11595)

> Find shortest path between connecting flights

> Different incoming and outgoing flights

need to be assigned to gates

→ find optimal assignment

> Classical optimization problem

→ quantum advantage?

www.DLR.de Chart 8 > DLR > TM, EL and TS > Quantum Heuristic Algorithms for Hard Planning Problems from Aerospace Research

Flight Gate Assignment - Decision Variable

Gate 1 Gate 2 Gate 3 Gate 8 Gate 9 Gate 10

Gate 20Gate 19Gate 18Gate 13Gate 12Gate 11

...

...

Gate

Flight i

Decision variable

xi =

(
1 if flight i is assigned to gate

0 otherwise
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Quantum computing the flight gate assignment problem

> binary variables encoding gates and flights

xiα =

{
1, if flight i ∈ F is assigned to gate α ∈ G
0, otherwise

x ∈ {0, 1}F⊗G → x binary variable→ x ∈ {−1, 1}F⊗G

eigenstate of third Pauli matrix σz

> leads to mathematical description of Hamiltonian

H =
∑n

j=1Qjjσ
z
j +

∑n
j,k=1
j<k

Qjkσ
z
j ⊗ σzk

> Task: find lowest energy⇔ shortest path

> Same mathematical description for problems in traffic, logistics, particle tracking,

...

www.DLR.de Chart 8 > DLR > TM, EL and TS > Quantum Heuristic Algorithms for Hard Planning Problems from Aerospace Research

Flight Gate Assignment - Decision Variable

Gate 1 Gate 2 Gate 3 Gate 8 Gate 9 Gate 10

Gate 20Gate 19Gate 18Gate 13Gate 12Gate 11

...

...

Gate

Flight i

Decision variable

xi =

(
1 if flight i is assigned to gate

0 otherwise
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Quantum computing the flight gate assignment problem

> Started with QUBO implementation

> Implementation of various improvements

– using binary encoding

– reformulation of Hamiltonian through projectors

– Using Conditional Value at Risk (CVaR)

Feasible ratio
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Quantum hardware runs of flight gate assignment problem
(Y. Chai, E. Epifanovsky, K. Jansen, A. Kaushik, S. Kühn, arxiv:2309.09686)

> hardware runs on IonQ’s Aria trapped ion quantum computer

> circuit: efficientSU2

> real VQE and inference runs
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C
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θ
i
)

(a)

|F | × |G|: 8

0 25 50 75 100
i

1250

1500

1750

2000
C

(
θ
i
)

(b)

|F | × |G|: 12

ideal simulation

shot noise

hardware run

Convergence
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The Schwinger model
(Schwinger 1962)

Quantization via Feynman path integral

Z =
∫
DAµDΨDΨ̄e−Sgauge−Sferm

Fermion action

Sferm =
∫
d2xΨ̄(x) [Dµ +m] Ψ(x)

gauge covriant derivative

DµΨ(x) ≡ (∂µ − ig0Aµ(x))Ψ(x)

with Aµ gauge potential, g0 bare coupling

Sgauge =
∫
d2xFµνFµν , Fµν(x) = ∂µAν(x)− ∂νAµ(x)
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Schwinger Model
(Schwinger 1962)

> existence of bound states (mass gap)

> asymptotic free (g0 → 0 for distance between charges going to zero)

> exactly solvable for zero fermion mass (Coleman)

> super-renormalizable

> with topological term: interesting CP-violating phase transition

⇒ valuable test laboratory for QCD
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The Schwinger model: QED in 1+1 dimensions

> introduce a 2-dimensional lattice with lattice spacing a

s

ψ

UP

Uµ
> fermion fields Ψ(x), Ψ̄(x) on the lattice sites
x = (t,x) integers

> discretized fermion action

S → a2
∑

x Ψ̄ [γµ∂µ − r ∂2µ︸︷︷︸
∇∗

µ∇µ

+m] Ψ(x)

> discrete derivatives

∂µ = 1
2

[
∇∗

µ +∇µ

]
∇µΨ(x) = 1

a [Ψ(x+ aµ̂)−Ψ(x)] , ∇∗
µΨ(x) = 1

a [Ψ(x)−Ψ(x− aµ̂)]

> second order derivative→ remove doubler← break chiral symmetry
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The Schwinger model: implementing gauge invariance

> Wilson’s fundamental observation: introduce parallel transporter connecting the

points x and y = x+ aµ̂ :

U(x, µ) = eiaAµ(x) ∈ U(1)

> lattice derivative: ∇µΨ(x) = 1
a [U(x, µ)Ψ(x+ µ)−Ψ(x)]

> plaquette action

Up = U(x, µ)U(x+ µ, ν)U †(x+ ν, µ)U †(x, ν)

→ FµνF
µν(x) for a→ 0

S = a2
∑

x

{
β(= 1

g20
)
[
1− Re(U(x,p))

]
+ Ψ̄(x)

[
m+ 1

2{γµ(∇µ +∇?
µ)− a∇?

µ∇µ}
]
Ψ
}

DESY. Page 18| Study of the running coupling with quantum computing | Arianna Crippa, 18/03/2024

2+1-dimensional QED

Sites:

Links:

where

  plaquette operator

Kogut-Susskind Hamiltonian

( : encodes how the fermion field changes 
as it moves between sites with an electromagnetic 
interaction)
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Schwinger model in the continuum and phase diagram

H = −iψ̄γ1 (∂1 − igA1)ψ +mψ̄ψ + 1
2

(
Ȧ1 +

gθ
2π

)2

2

The VQE, introduced as an alternative to quantum phase
estimation [36], aligns with the capabilities of current
and near-term quantum devices. We test our VQE us-
ing noiseless classical simulations between 6 to 12 qubits,
to identify the best possible setup regarding the ansatz
and gates that would capture the relevant ground states
most e�ciently. After the optimal ansatz-gate combina-
tion and variational parameters are found, the ground
states across the phase transition are prepared on IBM’s
quantum devices. We deomstrate that using state-of-the-
art error mitigation techniques—zero noise extrapola-
tion [37], readout error mitigation [38], Pauli twirling [39]
and dynamical decoupling [40]—allows for obtaining pre-
cise results from the quantum measurements. To under-
stand the minimum system sizes required to extrapolate
faithfully to the continuum limit with a quantum com-
puter, we use matrix product states (MPS). We numeri-
cally simulate intermediate system sizes and perform the
continuum extrapolation, which we compare to analytical
results. Our study also shows universality for the consid-
ered observables, as both discretizations lead to the same
continuum values.

The rest of the paper is structured as follows. In
Sec. II, we briefly introduce the Schwinger model and
review its phase structure in the presence of a topolog-
ical ✓-term. Moreover, we discuss two di↵erent ways of
discretizing it on a lattice using Wilson and staggered
fermions. We proceed with presenting our ansatz for
the VQE as well as the MPS techniques we use to esti-
mate the resources for taking a reliable continuum limit
in Sec. III. Our numerical results demonstrating the per-
formance of the ansatz in various parameter regimes are
presented in Sec. IV, before concluding in Sec. V.

II. THE SCHWINGER MODEL

The Schwinger model describes quantum electrody-
namics in (1+1)-dimensions coupled to a single, massive
Dirac fermion [25]. Here we briefly introduce the Hamil-
tonian formulation and review its phase diagram in the
presence of a topological ✓-term. We then discuss two
di↵erent discretizations for the fermionic matter fields of
the model, namely Wilson and staggered fermions.

A. Hamiltonian formulation in the continuum

The continuum Hamiltonian density of the Schwinger
model in the presence of a topological ✓-term is given by

H = �i �1 (@1 � igA1) +m  +
1

2

✓
Ȧ1 +

g✓

2⇡

◆2

, (1)

where  (x) is a two-component Dirac spinor describ-
ing the fermionic matter. The spinor components,  ↵,
↵ = 1, 2, fulfill the standard fermionic anticommuta-
tion relations { †

↵(x), �(y)} = �(x � y)�↵� . The gauge

field Aµ, µ = 0, 1, mediates the interaction between the
matter fields. Here we have chosen the temporal gauge,
A0 = 0, hence only the spatial component A1 appears in
the Hamiltonian. The parameters m and g are the bare
fermion mass and the coupling between fermions and the
gauge fields. The matrices �µ are two dimensional ma-
trices obeying the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ , with
⌘ = diag(1, �1), and  corresponds to  †�0. The phys-
ically relevant gauge invariant states of the Hamiltonian
have to fulfill Gauss’s law

�@1Ȧ
1 = g �0 , (2)

where �Ȧ1 is the electric field and g �0 represents the
charge density.

The topological term, g✓/2⇡, appearing in the Hamil-
tonian corresponds to a constant background electric field
whose e↵ect has been assessed both theoretically and nu-
merically. Coleman argued that the physics of the model
is periodic in ✓ with a period of 2⇡, and that above a cer-
tain critical mass, mc/g, the model undergoes a first or-
der quantum phase transition at ✓ = ⇡ [30]. This picture
was later on confirmed in numerical simulations, where
it was found that the critical line ends in a second-order
quantum phase transition at mc/g ⇠ 0.33 [29, 34, 41].
Figure 1 provides a sketch of the phase diagram, high-
lighting the first-order phase transition line, which cul-
minates with a second-order phase transition at mc/g.
The physics of the model can also be understood qual-

FIG. 1. Illustration of the phase diagram of the Schwinger
model in the presence of a topological term in the m/g � ✓
plane. Since the physics is periodic in ✓ with period 2⇡, only
the first period is shown. The critical line (shown in black)
indicates the first-order phase transitions occurring at ✓ = ⇡
for masses larger than the critical one mc/g ⇡ 0.33, which
ends in a second-order phase transition (green dot) exactly at
mc/g. Below the critical mass no transitions occur.

itatively in an intuitive picture. For large values of the
mass in units of the coupling, m/g � 1, it is generally
unfavorable to generate charged particles. In the regime

• constant external electric field: θ
• for m/g > 0.33, 1st order phase transition
• CP violating

• 2nd order endpoint at m/g = 0.33
• hard to explore with Monte Carlo methods
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Schwinger model on the lattice: Wilson fermions
(Takis Angelides, Arianna Crippa, Lena Funcke, Karl Jansen,

Stefan Kühn, Pranay Naredi, Ivano Tavernelli, Derek Wang, arxiv:2312.12831 )

> Wilson Hamiltonian

HW =

N−2∑
n=0

(
φ̄n

(
1 + iγ1

2a

)
Unφn+1 + h.c.

)

+

N−1∑
n=0

(
mlat +

1

a

)
φ̄nφn +

N−2∑
n=0

ag2

2
(Ln + l0)

2 .

> mass mlat; coupling g; lattice spacing a; electric field l0 =
θ
2π

> Link operator Uµ = eigAµ , Aµ gauge potential
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Pauli representation through
Jordan-Wigner transformation

> Jordan-Wigner transformation

φn,α → χ2n−bα
2
c+1

χn =
∏

k<n(iZk)σ
−
n

> (dimensionless) Wilson Hamiltonian, x = 1/(ag)2

→ open boundary conditions: eliminate gauge fields

WW = x
∑N−2

n=0 (X2n+2X2n+3 + Y2n+2Y2n+3) +(
mlat

g

√
x+ x

)∑N−1
n=0 (X2n+1X2n+2 + Y2n+1Y2n+2) +

∑N−2
n=0 (l0 +

∑n
k=0Qk)

2
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Pauli representation through
Jordan-Wigner transformation

> electric field density operator

LW =

N−1∑
k=0

Qk =

N∑
k=0−1

φ†nφn

→ JW-transformation: LW = l0 +
1

2

dN/2e−1∑
k=0

(Z2k + Z2k+1)

> particle number operator

PW = N + 1
2

∑N−1
n=0 φφ

→ JW-transformation: PW = N + 1
2

∑N−1
n=0 (X2n+1X2n+2 + Y2n+1Y2n+2)
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Pauli representation through
Jordan-Wigner transformation

> (dimensionless) Wilson Hamiltonian, x = 1/(ag)2

→ open boundary conditions: eliminate gauge fields

WW = x
∑N−2

n=0 (X2n+2X2n+3 + Y2n+2Y2n+3) +(
mlat

g

√
x+ x

)∑N−1
n=0 (X2n+1X2n+2 + Y2n+1Y2n+2) +

∑N−2
n=0 (l0 +

∑n
k=0Qk)

2

> electric field density operator

LW = l0 +

dN/2e−1∑
k=0

Qk = l0 +
1

2

dN/2e−1∑
k=0

(Z2k + Z2k+1)

> particle number operator

PW = N + 1
2

∑N−1
n=0 (X2n+1X2n+2 + Y2n+1Y2n+2)
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Schwinger model on the lattice: staggered fermions

> staggered Hamiltonian

HS = − i
2a

∑N−2
n=0

(
φ†nUnφn+1 − h.c.

)
+mlat

∑N−1
n=0 (−1)nφ

†
nφn + ag2

2

∑N−2
n=0 L

2
n

> mass shift

mr
g = mlat

g + 1
8/

√
x

> Pauli representation

WS =
x

2

N−2∑
n=0

(XnXn+1 + YnYn+1)

+
mlat

g

√
x

N−1∑
n=0

(−1)nZn +

N−2∑
n=0

(
l0 +

n∑
k=0

Qk

)2

Theory
Fermion Discretizations
• Continuum Schwinger model 

 


• Wilson fermions remove the doublers (extra flavour by lattice discretization) with Wilson term  
 

        


• Staggered fermions

ℋ = − iψγ1 (∂1 − igA1) ψ + mψψ + 1
2 ( ·A1 + gθ

2π )
2

H → H − ra2

2 ∑
x

ψ(x)∂2
x (ψ(x)) ⟹ mdoubler ∼ r

a

ψn,α=1 ψn,α=2

Site n

ψn+1,α=1 ψn+1,α=2

Site n+1Lattice 

spacing 


a ψn,α=1 ψn,α=2 ψn+1,α=1 ψn+1,α=2

Lattice 

spacing 


a

Lattice 

spacing 


a

Lattice 

spacing 


a

Effective 

Lattice Spacing 


2a

Double lattice spacing 
leads to half Brillouin zone 
hence fermion propagator 

only has one pole within 


this momentum range and 
hence we have only one


fermion flavour
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Determining the mass shift: a MPS calculation

> electric field density (EFD) in mass perturbation theory

F
g = eγ√

π

(
m
g

)
sin θ − 8.9139 e2γ

4π

(
m
g

)2
sin(2θ)⇒ for m = 0 EFD vanishes
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mlat

g
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F
g
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mlat

g
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F
g

Mass Shift Prediction = − 1
8
√
x
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Wilson staggered
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Example for a quantum circuit
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The Ansatz

6

For the particle number we find

PS =
N

2
+

1

2

N�1X

n=0

(�1)nZn. (18)

When there are no particles present, i.e. the state of the
system is given by spin down on even sites and spin up
on odd sites, the sum in the equation above contributes a
�1 for every site. In contrast, for even sites with spin up
and on odd sites with spin down, the sum contributes a
+1. Hence, the first term in Eq. (18) is added to render
PS positive semidefinite.

In summary, both staggered and Wilson fermions pro-
vide a viable discretization of the continuum Schwinger
Hamiltonian. For a lattice system with N physical sites
the Wilson discretization results in a Hamiltonian on 2N
qubits, whereas the staggered approach only requires N
qubits. While both formulations reproduce the correct
continuum limit, as we demonstrate explicitly in Sec. IV,
it is a priori not clear which of the two discretizations con-
verges faster. Although the staggered approach requires
less qubits than the Wilson one, this does not imply it
will produce better results given a fixed amount of re-
sources. The latter question is particularly relevant for
quantum computing, as current and near-term devices
only o↵er a limited number of qubits that still su↵er from
a considerable level of noise. Here, we aim at testing both
approaches in a realistic scenario to benchmark their per-
formance. For the rest of the paper we will focus on the
sector of vanishing total charge,

P
n Qn = 0, for both

approaches.

III. METHODS

In order to assess both fermion discretizations, we
study their performance with a VQE as well as their
convergence towards the continuum limit. Here, we intro-
duce the VQE setup we consider, including a description
of the parametric ansatz circuits and the optimization
procedure for the parameters we utilize. Moreover, we
discuss the error mitigation techniques used for the in-
ference runs on quantum hardware. Finally, we briefly
describe the MPS techniques we use to explore the behav-
ior of both discretizations towards the continuum limit.

A. Parametric ansatz circuits for VQE

In order to test the performance of the di↵erent dis-
cretizations for VQE, we focus on two di↵erent types of
parametric ansätze and consider two di↵erent types of
gates, as shown in Fig. 2. We refer to the two ansatz
architectures as “brick” (c.f. Fig. 2(c)) and “ladder” (c.f.
Fig. 2(d)). The two types of parametric gates we con-
sider are the SO(4) gates and the RXX+Y Y gates, whose
decomposition in standard controlled-NOT (CNOT) and
Pauli rotation gates is shown in Figs. 2(a) and 2(b). Here,

we have chosen SO(4) instead of SU(4) gates, because the
Hamiltonians we study are real, and hence their ground
states are real. Thus, we can restrict our ansätze to the
real subspace of the Hilbert space. While the SO(4) gates
are in principle more expressive than the RXX+Y Y ones,
they do not conserve the total charge. As a result, if
we use SO(4) gates, we need to manually enforce van-
ishing total charge, which we do by adding a penalty

term �
⇣PN�1

n=0 Qn

⌘2
to the Hamiltonians in Eq. (9) and

Eq. (16). The Lagrange multiplier � has to be chosen
su�ciently large that one obtains a ground state with
vanishing total charge. In contrast, the RXX+Y Y gate
preserves the total charge, but is generally less expres-
sive. In all our simulations, we choose the initial param-

SO(4) =

RZ R(✓1, ✓2, ✓3) R†
Z

RZ RY R(✓4, ✓5, ✓6) R†
Y R†

Z

(a)

RXX+Y Y
=

RZ RY (✓) R†
Z

RX RZ RY (✓) R†
Z R†

X

(b)

...

|q0i

| ini

G

|q1i
G

|q2i

|qN�3i
G

|qN�2i
G

|qN�1i

(c)

. . .

. . .

. . .

...
. . .

. . .

. . .

. . .

|q0i

| ini

G

|q1i
G

|q2i

|qN�3i
G

|qN�2i
G

|qN�1i

(d)

FIG. 2. Decomposition of a generic SO(4) gate depend-
ing on the six parameters ✓1, . . . , ✓6 (a) the RXX+Y Y (✓) =
exp(�i✓(XX + Y Y )/2) (b), into CNOT and Pauli rotation
gates. Boxes acting on a single qubit correspond to Pauli
rotation gates, RP (↵) = exp{�i↵P/2} with P 2 {X,Y, Z}.
Single-qubit gates where the argument is omitted refer to ro-
tations around an angle ⇡/2, RP (⇡/2). The light blue boxes
represent the parameterized gates which are R(↵,�, �) =
RX(�)RZ(�)RX(↵) in (a) and RY (✓) in (b). Panel (c) and
(d) illustrate one layer of the brick and ladder ansatz, respec-
tively, both following a non-parametric part for preparing the
initial state | ini (yellow box). The first layer in the brick
ansatz has a CNOT-depth of 4 whereas in ladder it is 2n� 2,
where n is the number of qubits, and in both cases it increases
by 4 with each layer.

eters for the parametric part of this ansatz randomly in
the interval [0, 0.001), such that the parametric part of
the circuit is close to the identity and we start the VQE
with a state close to | ini.

For Wilson fermions, three options for the ansatz’s

• decomposition of
SO(4) and RXX+Y Y gates

• brick and ladder ansatz
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Mitigating quantum computing results
> zero noise extrapolation (ZNE) in theory

< ψ|O|ψ〉 =< 0
∣∣∣U †OU

∣∣∣ 0 >
|ψ >= U |0 >= UU †U

∣∣∣0 >= UU †UU †U
∣∣∣ 0 >

Error mitigation techniques

• Noise factors: 1, 3, 5
< ψ |O |ψ > = < 0 |U†OU |0 >

|ψ > = U |0 > = UU†U |0 > = UU†UU†U |0 >

Zero noise extrapolation

Qiskit library
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ZNE in practise

Error mitigation techniques
Zero noise extrapolation
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Results: small mass
> results for mr/g = 0.01 (remember: x = 1/(ag)2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

l0

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075
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F
g

Mass perturbation theory

Staggered with theory MS (same num. of qubits as Wilson), MSE = 5.989e-07

Staggered (same x as Wilson), MSE = 9.804e-09

Staggered with theory MS (same x as Wilson), MSE = 9.816e-07

Staggered (same num. of qubits as Wilson), MSE = 2.787e-08

Wilson, MSE = 3.581e-09

2

The VQE, introduced as an alternative to quantum phase
estimation [36], aligns with the capabilities of current
and near-term quantum devices. We test our VQE us-
ing noiseless classical simulations between 6 to 12 qubits,
to identify the best possible setup regarding the ansatz
and gates that would capture the relevant ground states
most e�ciently. After the optimal ansatz-gate combina-
tion and variational parameters are found, the ground
states across the phase transition are prepared on IBM’s
quantum devices. We deomstrate that using state-of-the-
art error mitigation techniques—zero noise extrapola-
tion [37], readout error mitigation [38], Pauli twirling [39]
and dynamical decoupling [40]—allows for obtaining pre-
cise results from the quantum measurements. To under-
stand the minimum system sizes required to extrapolate
faithfully to the continuum limit with a quantum com-
puter, we use matrix product states (MPS). We numeri-
cally simulate intermediate system sizes and perform the
continuum extrapolation, which we compare to analytical
results. Our study also shows universality for the consid-
ered observables, as both discretizations lead to the same
continuum values.

The rest of the paper is structured as follows. In
Sec. II, we briefly introduce the Schwinger model and
review its phase structure in the presence of a topolog-
ical ✓-term. Moreover, we discuss two di↵erent ways of
discretizing it on a lattice using Wilson and staggered
fermions. We proceed with presenting our ansatz for
the VQE as well as the MPS techniques we use to esti-
mate the resources for taking a reliable continuum limit
in Sec. III. Our numerical results demonstrating the per-
formance of the ansatz in various parameter regimes are
presented in Sec. IV, before concluding in Sec. V.

II. THE SCHWINGER MODEL

The Schwinger model describes quantum electrody-
namics in (1+1)-dimensions coupled to a single, massive
Dirac fermion [25]. Here we briefly introduce the Hamil-
tonian formulation and review its phase diagram in the
presence of a topological ✓-term. We then discuss two
di↵erent discretizations for the fermionic matter fields of
the model, namely Wilson and staggered fermions.

A. Hamiltonian formulation in the continuum

The continuum Hamiltonian density of the Schwinger
model in the presence of a topological ✓-term is given by

H = �i �1 (@1 � igA1) +m  +
1

2

✓
Ȧ1 +

g✓

2⇡

◆2

, (1)

where  (x) is a two-component Dirac spinor describ-
ing the fermionic matter. The spinor components,  ↵,
↵ = 1, 2, fulfill the standard fermionic anticommuta-
tion relations { †

↵(x), �(y)} = �(x � y)�↵� . The gauge

field Aµ, µ = 0, 1, mediates the interaction between the
matter fields. Here we have chosen the temporal gauge,
A0 = 0, hence only the spatial component A1 appears in
the Hamiltonian. The parameters m and g are the bare
fermion mass and the coupling between fermions and the
gauge fields. The matrices �µ are two dimensional ma-
trices obeying the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ , with
⌘ = diag(1, �1), and  corresponds to  †�0. The phys-
ically relevant gauge invariant states of the Hamiltonian
have to fulfill Gauss’s law

�@1Ȧ
1 = g �0 , (2)

where �Ȧ1 is the electric field and g �0 represents the
charge density.

The topological term, g✓/2⇡, appearing in the Hamil-
tonian corresponds to a constant background electric field
whose e↵ect has been assessed both theoretically and nu-
merically. Coleman argued that the physics of the model
is periodic in ✓ with a period of 2⇡, and that above a cer-
tain critical mass, mc/g, the model undergoes a first or-
der quantum phase transition at ✓ = ⇡ [30]. This picture
was later on confirmed in numerical simulations, where
it was found that the critical line ends in a second-order
quantum phase transition at mc/g ⇠ 0.33 [29, 34, 41].
Figure 1 provides a sketch of the phase diagram, high-
lighting the first-order phase transition line, which cul-
minates with a second-order phase transition at mc/g.
The physics of the model can also be understood qual-

FIG. 1. Illustration of the phase diagram of the Schwinger
model in the presence of a topological term in the m/g � ✓
plane. Since the physics is periodic in ✓ with period 2⇡, only
the first period is shown. The critical line (shown in black)
indicates the first-order phase transitions occurring at ✓ = ⇡
for masses larger than the critical one mc/g ⇡ 0.33, which
ends in a second-order phase transition (green dot) exactly at
mc/g. Below the critical mass no transitions occur.

itatively in an intuitive picture. For large values of the
mass in units of the coupling, m/g � 1, it is generally
unfavorable to generate charged particles. In the regime

• blue circles: exact diagonalization, red pluses: exact simulations,
black crosses: quantum hardware
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Results: large mass mr/g = 10
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The VQE, introduced as an alternative to quantum phase
estimation [36], aligns with the capabilities of current
and near-term quantum devices. We test our VQE us-
ing noiseless classical simulations between 6 to 12 qubits,
to identify the best possible setup regarding the ansatz
and gates that would capture the relevant ground states
most e�ciently. After the optimal ansatz-gate combina-
tion and variational parameters are found, the ground
states across the phase transition are prepared on IBM’s
quantum devices. We deomstrate that using state-of-the-
art error mitigation techniques—zero noise extrapola-
tion [37], readout error mitigation [38], Pauli twirling [39]
and dynamical decoupling [40]—allows for obtaining pre-
cise results from the quantum measurements. To under-
stand the minimum system sizes required to extrapolate
faithfully to the continuum limit with a quantum com-
puter, we use matrix product states (MPS). We numeri-
cally simulate intermediate system sizes and perform the
continuum extrapolation, which we compare to analytical
results. Our study also shows universality for the consid-
ered observables, as both discretizations lead to the same
continuum values.

The rest of the paper is structured as follows. In
Sec. II, we briefly introduce the Schwinger model and
review its phase structure in the presence of a topolog-
ical ✓-term. Moreover, we discuss two di↵erent ways of
discretizing it on a lattice using Wilson and staggered
fermions. We proceed with presenting our ansatz for
the VQE as well as the MPS techniques we use to esti-
mate the resources for taking a reliable continuum limit
in Sec. III. Our numerical results demonstrating the per-
formance of the ansatz in various parameter regimes are
presented in Sec. IV, before concluding in Sec. V.

II. THE SCHWINGER MODEL

The Schwinger model describes quantum electrody-
namics in (1+1)-dimensions coupled to a single, massive
Dirac fermion [25]. Here we briefly introduce the Hamil-
tonian formulation and review its phase diagram in the
presence of a topological ✓-term. We then discuss two
di↵erent discretizations for the fermionic matter fields of
the model, namely Wilson and staggered fermions.

A. Hamiltonian formulation in the continuum

The continuum Hamiltonian density of the Schwinger
model in the presence of a topological ✓-term is given by

H = �i �1 (@1 � igA1) +m  +
1

2

✓
Ȧ1 +

g✓

2⇡

◆2

, (1)

where  (x) is a two-component Dirac spinor describ-
ing the fermionic matter. The spinor components,  ↵,
↵ = 1, 2, fulfill the standard fermionic anticommuta-
tion relations { †

↵(x), �(y)} = �(x � y)�↵� . The gauge

field Aµ, µ = 0, 1, mediates the interaction between the
matter fields. Here we have chosen the temporal gauge,
A0 = 0, hence only the spatial component A1 appears in
the Hamiltonian. The parameters m and g are the bare
fermion mass and the coupling between fermions and the
gauge fields. The matrices �µ are two dimensional ma-
trices obeying the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ , with
⌘ = diag(1, �1), and  corresponds to  †�0. The phys-
ically relevant gauge invariant states of the Hamiltonian
have to fulfill Gauss’s law

�@1Ȧ
1 = g �0 , (2)

where �Ȧ1 is the electric field and g �0 represents the
charge density.

The topological term, g✓/2⇡, appearing in the Hamil-
tonian corresponds to a constant background electric field
whose e↵ect has been assessed both theoretically and nu-
merically. Coleman argued that the physics of the model
is periodic in ✓ with a period of 2⇡, and that above a cer-
tain critical mass, mc/g, the model undergoes a first or-
der quantum phase transition at ✓ = ⇡ [30]. This picture
was later on confirmed in numerical simulations, where
it was found that the critical line ends in a second-order
quantum phase transition at mc/g ⇠ 0.33 [29, 34, 41].
Figure 1 provides a sketch of the phase diagram, high-
lighting the first-order phase transition line, which cul-
minates with a second-order phase transition at mc/g.
The physics of the model can also be understood qual-

FIG. 1. Illustration of the phase diagram of the Schwinger
model in the presence of a topological term in the m/g � ✓
plane. Since the physics is periodic in ✓ with period 2⇡, only
the first period is shown. The critical line (shown in black)
indicates the first-order phase transitions occurring at ✓ = ⇡
for masses larger than the critical one mc/g ⇡ 0.33, which
ends in a second-order phase transition (green dot) exactly at
mc/g. Below the critical mass no transitions occur.

itatively in an intuitive picture. For large values of the
mass in units of the coupling, m/g � 1, it is generally
unfavorable to generate charged particles. In the regime

• including hardware results
‘
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2+1 dimensional Quantum Electrodynamics

> shows confinement and asymptotic freedom

→ resemblence with Quantum Chromodynamics

> microscopic model for condensed matter physics

> Hamiltonian approach:

– add topological Chern-Simons term

– supply with non-zero matter density

– real time evolution

> Here: Quantum Computing
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The Hamiltonian of 2+1 dimensional QED ĤQED

> Electric field operator: g2

2

∑
~n

(
Ê2
~n,x + Ê2

~n,y

)
> Plaquette operator: − 1

2a2g2
∑

~n

(
P̂~n + P̂ †

~n

)
> mass term +m

∑
~n(−1)nx+ny φ̂†~nφ̂~n

> kinetic term Û~n,x = eiagÂ~n,x

i

2a

∑
~n

(
φ̂†~nÛ

†
~n,xφ̂~n+x − h.c.

)
− (−1)nx+ny

2a

∑
~n

(
φ̂†~nÛ

†
~n,yφ̂~n+y + h.c.

)
> Gauss law[∑

µ=x,y

(
Ê~n−µ,µ − Ê~n,µ

)
− q̂~n −Q~n

]
|Φ〉 = 0⇐⇒ |Φ〉 ∈ Hph
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Static potential
(Arianna Crippa, Karl Jansen, Enrico Rinaldi, arXiv:2411.05628)

> potential between static charges at distance r

V (r) = V0 + α log r + σr

– α coupling from Coulomb part

– σ string tension from linear part

– large distance→ string breaking

– V0 constant
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Numerical implementation

> action of electric field and link operators

Ê~n,µ

∣∣e~n,µ〉 = e~n,µ
∣∣e~n,µ〉 , with e~n,µ ∈ [−l, l] ,

Û~n,µ

∣∣e~n,µ〉 = ∣∣e~n,µ + 1
〉
, Û †

~n,µ

∣∣e~n,µ〉 = ∣∣e~n,µ − 1
〉
.

> encoding of gauge fields

|−1〉ph 7→ |00〉 , , |0〉ph 7→ |01〉 , , |1〉ph 7→ |11〉 .
> encoding of fermionic operator through Jordan Wigner transformation

φ̂~n =
[ ∏
~k<~n

(−iσz~k)
]
σ+~n , , φ̂†~n =

[ ∏
~k<~n

(iσz~k
)
]
σ−~n

> discretization: U(1)→ Z(2l + 1)
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Mutual information

> definition of mutual informatioan, S(.) von Neumann entropy
I(X;Y ) = S(X) + S(Y )− S(X,Y )

> use mutual information to construct quantum circuits

g = 0.5, 1.0, 1.5, 2.0, panel (a), (b), (c), (d)
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3x2 lattice

> 3x2 lattice system

> quantum circuit
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Lattice and resources

> start with 3x2 lattice

> resource estimation

Resource Estimation 3× 2 OBC system

l # Qubits # CNOTs CNOT Depth # Parame-

ters

1 10 152 60 30

3 12 200 88 41

7 14 252 122 54
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Quantinuum hardware

> used Quantinuum H- series System Model H1-1, employing 20 qubits

> based on Ytterbium-171 ions along a linear trap

> work-flow through Quantinuum Nexus cloud platform

> Emulator runs on H1-1E

> used various noise mitigation techniques

> performed also mid-circuit measurements
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Sampling and VQE results inCoulomb regime

> VQE expectation values, ED and VQE

> infidelity F̃ ≡ 1− F = 1− | 〈ψVQE| |ψED〉 |2

> sampling states

> ground state probabilities
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Confinement regime

> ground state probabilities

in the Confinement regime

> flux configurations
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String breaking regime

> probabilities and avoided level crossing
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Hardware results

> using H1-1 system of Quantinuum

> performing inference runs
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4× 3 lattice

> 4× 3 lattice system

> resource estimate

Resource Estimation 4× 3 OBC system

l # Qubits # CNOTs CNOT Depth # Parame-

ters

1 24 450 136 81

3 30 582 186 123

7 36 738 238 177
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VQE results for the 4× 3 lattice

> static potential, ED and VQE
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Quantum circuit
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Coulomb regime for 4× 3 lattice

> flux configurations

> state probabilities
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Confinement regime for 4× 3 lattice

> state probabilities

> single flux string connecting static charges
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Quantum computing particle masses

> quantum circuit preserving zero charge sector

> Energygap E1 − E0

→ physical particle mass
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Appendix A: Gray encoding variational circuits

As outlined in Section III A, the qubit requirement for
the adopted encoding follows a logarithmic scaling pat-
tern. Specifically, for certain values of l, the exclusion of
a single state su�ces and as a consequence, the complex-
ity of the required gate set for circuit implementation is
significantly reduced. The logic of the exclusion of states
outside the reduced Hilbert space H2l+1 for l > 1 mirrors
that of the l = 1 case. Moreover, when only one state
requires exclusion, a discernible pattern emerges in the
gate structure. In this section, we present the variational
circuits corresponding to l = 3, 7, 15, in Fig.13,14,15 re-
spectively.

|0i Ry(✓1)

|0i Ry(✓2)

|0i Ry(✓3) Ry(✓4)

FIG. 13: Variational circuit for Gray encoding with l = 3.
State excluded |100i and vacuum state=|010i.

|0i Ry(✓1)

|0i Ry(✓2) Ry(✓6)

|0i Ry(✓3)

|0i Ry(✓4) Ry(✓5)

FIG. 14: Variational circuit for Gray encoding with l = 7.
State excluded |1000i and vacuum state=|0100i.

|0i Ry(✓1)

|0i Ry(✓2) Ry(✓8)

|0i Ry(✓3) Ry(✓7)

|0i Ry(✓4)

|0i Ry(✓5) Ry(✓6)

FIG. 15: Variational circuit for Gray encoding with l = 15.
State excluded |10000i and vacuum state=|0100i.

The next step is to establish an appropriate frame-
work for the entanglement of multiple gauge fields. This
task is particularly essential when working with an elec-
tric(magnetic) basis formulation especially in regimes
characterised by weak(strong) coupling. In this study,
we devised a structure capable of entangling all fields,
while guaranteeing the selection of states within a re-
duced Hilbert space. In the future, our work will be
devoted to exploring even more resource-e�cient alterna-
tives. This exploration will involve a complete analysis
of the lattice itself, with the aim of further optimising
our approach and improving computational e�ciency.

Appendix B: �E

In this section, we report our investigation of the mass
gap �E with Monte Carlo simulations. We find numer-
ical evidence that the volume L/a = 3 used with the
present Hamiltonian formulation is too small to match
the mass gap of the theory. Nonetheless, we provide
some quantitative estimate of the coupling range needed
for this approach, finding that a slight increase in the
volume size on the Hamiltonian simulation would allow
for such a matching procedure.

A U(1) gauge theory in 2+1 dimensions is a non triv-
ial theory only at finite lattice spacing, where it can be

12

lattice is coarse enough to make the glueball fit, though
several values of � give values above 1/a. According to
our results, we conclude that the “sweet spot” to per-
form matching using the glueball mass would be around
� ⇡ 1.8, and with a Hamiltonian with at least (L/a) � 6.
It is understood that this value of the coupling should be
extrapolated to the Hamiltonian limit [33] in order to
compare the two formalisms.

In Fig.18, we show the data of the energy gap with
exact diagonalization in the Hamiltonian approach and
truncations l 2 [1, 3]. Unlike the previous scenario dis-
cussed in Section IV, where the matching value is close
to � ⇠ 1.4, the extrapolation of �MC is still under study.
This aspect of the analysis will be postponed to future
work.

FIG. 18: Energy gap for 3⇥ 3 PBC system: Exact di-
agonalization results with truncation l 2 [1, 3] (lines with low
triangles). The dotted vertical line refers to the approximate
� value used in this work as the matching value between MC
and the Hamiltonian approach.

Appendix C: Electric/magnetic basis analysis

In this section, we extend the analysis for the step scal-
ing method of Sec.V, with an inclusion of both electric
and magnetic basis. We start from the value of � ⌘ �MC

where we have matching with Monte Carlo and we com-
pute the values of the two static forces both in the electric
and magnetic basis, within a range of truncations. For
small � (strong g) the electric basis is preferable, the elec-
tric Hamiltonian (Eq.2) is dominant and we do not need
a large value of l. We decided to consider l = 7, both
to have good precision in the results, but also because,
with a Gray-type encoding (see Section IIIA in the main
text and Appendix A), we can exploit a limited number
of qubits for a greater number of states. We also use
a larger truncation in the electric basis, i.e. l = 32, to
have a reference value for comparison with the magnetic
basis, in fact with this high truncation the results are
more likely independent of l and have a physical mean-
ing. For the magnetic basis, we also fix l = 7 and scan

over the discretization parameter L
6, to find a good ap-

proximation of the previous reference value. We then
consider a relative error to be Emeas�Eexact

Eexact
⌘ ✏ < 0.01

(where Emeas is the value of the quantity analysed with
fixed truncation and Eexact is the reference value). In
the interval of interest 1.4  �  100 we select which,
between electric basis (l = 7) and magnetic basis (l = 7
and L), gives us the lowest relative error. The results
are then used as cuts in the step scaling procedure, as
described in Section V. We also tested that even with a
smaller truncation l = 3, and higher discretization, we
can reproduce the same results, thus with a lower num-
ber of resources, high precision can be still guaranteed.
In the following section, we will show the data of the
static forces F (r1 = 1.0, g) and F (r2 = 2.236, g) with
l = 3, the other case follows a similar procedure.

The selection method systematically explores the po-
tential values of L with a fixed l for the magnetic basis.
In the top panel of Fig.19, we present the relative error
✏ for the quantity r

2
1F (r1 = 1.0, g) across various ranges

of g and L (horizontal axes). The results that satisfy the
condition ✏ < 0.01 are considered suitable for the scal-
ing approach and are highlighted with triangles markers.
Examining the bottom panel, which displays the same
data with a bi-dimensional perspective, we observe that
for small couplings, a discretization of at least L > 130
is required. Conversely, in the stronger coupling region,
the magnetic data demonstrate higher precision only for
specific values of L. This behaviour is in line with expec-
tations, as an increase in g should allow for the inclusion
of more states within the truncation, ultimately favour-
ing L = l + 1. However, the fluctuations are remarkably
pronounced and the optimal value of L strongly depends
on the considered value of g. Given the wide range of
couplings scanned during the step scaling process, ad-
justing discretization for minor intervals of g is deemed
ine�cient. Consequently, we opt for the magnetic basis
only with a stable configuration of input parameters.

6
The magnetic basis has the advantage of needing a lower trun-

cation when � � 1, but in general a more costly Hamiltonian.
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Quantum computing particle masses

> quantum circuit preserving zero charge sector

> Energygap E1 − E0

→ physical particle mass

10
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Appendix A: Gray encoding variational circuits

As outlined in Section III A, the qubit requirement for
the adopted encoding follows a logarithmic scaling pat-
tern. Specifically, for certain values of l, the exclusion of
a single state su�ces and as a consequence, the complex-
ity of the required gate set for circuit implementation is
significantly reduced. The logic of the exclusion of states
outside the reduced Hilbert space H2l+1 for l > 1 mirrors
that of the l = 1 case. Moreover, when only one state
requires exclusion, a discernible pattern emerges in the
gate structure. In this section, we present the variational
circuits corresponding to l = 3, 7, 15, in Fig.13,14,15 re-
spectively.

|0i Ry(✓1)

|0i Ry(✓2)

|0i Ry(✓3) Ry(✓4)

FIG. 13: Variational circuit for Gray encoding with l = 3.
State excluded |100i and vacuum state=|010i.
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|0i Ry(✓3)

|0i Ry(✓4) Ry(✓5)

FIG. 14: Variational circuit for Gray encoding with l = 7.
State excluded |1000i and vacuum state=|0100i.
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FIG. 15: Variational circuit for Gray encoding with l = 15.
State excluded |10000i and vacuum state=|0100i.

The next step is to establish an appropriate frame-
work for the entanglement of multiple gauge fields. This
task is particularly essential when working with an elec-
tric(magnetic) basis formulation especially in regimes
characterised by weak(strong) coupling. In this study,
we devised a structure capable of entangling all fields,
while guaranteeing the selection of states within a re-
duced Hilbert space. In the future, our work will be
devoted to exploring even more resource-e�cient alterna-
tives. This exploration will involve a complete analysis
of the lattice itself, with the aim of further optimising
our approach and improving computational e�ciency.

Appendix B: �E

In this section, we report our investigation of the mass
gap �E with Monte Carlo simulations. We find numer-
ical evidence that the volume L/a = 3 used with the
present Hamiltonian formulation is too small to match
the mass gap of the theory. Nonetheless, we provide
some quantitative estimate of the coupling range needed
for this approach, finding that a slight increase in the
volume size on the Hamiltonian simulation would allow
for such a matching procedure.

A U(1) gauge theory in 2+1 dimensions is a non triv-
ial theory only at finite lattice spacing, where it can be

12

lattice is coarse enough to make the glueball fit, though
several values of � give values above 1/a. According to
our results, we conclude that the “sweet spot” to per-
form matching using the glueball mass would be around
� ⇡ 1.8, and with a Hamiltonian with at least (L/a) � 6.
It is understood that this value of the coupling should be
extrapolated to the Hamiltonian limit [33] in order to
compare the two formalisms.

In Fig.18, we show the data of the energy gap with
exact diagonalization in the Hamiltonian approach and
truncations l 2 [1, 3]. Unlike the previous scenario dis-
cussed in Section IV, where the matching value is close
to � ⇠ 1.4, the extrapolation of �MC is still under study.
This aspect of the analysis will be postponed to future
work.

FIG. 18: Energy gap for 3⇥ 3 PBC system: Exact di-
agonalization results with truncation l 2 [1, 3] (lines with low
triangles). The dotted vertical line refers to the approximate
� value used in this work as the matching value between MC
and the Hamiltonian approach.

Appendix C: Electric/magnetic basis analysis

In this section, we extend the analysis for the step scal-
ing method of Sec.V, with an inclusion of both electric
and magnetic basis. We start from the value of � ⌘ �MC

where we have matching with Monte Carlo and we com-
pute the values of the two static forces both in the electric
and magnetic basis, within a range of truncations. For
small � (strong g) the electric basis is preferable, the elec-
tric Hamiltonian (Eq.2) is dominant and we do not need
a large value of l. We decided to consider l = 7, both
to have good precision in the results, but also because,
with a Gray-type encoding (see Section IIIA in the main
text and Appendix A), we can exploit a limited number
of qubits for a greater number of states. We also use
a larger truncation in the electric basis, i.e. l = 32, to
have a reference value for comparison with the magnetic
basis, in fact with this high truncation the results are
more likely independent of l and have a physical mean-
ing. For the magnetic basis, we also fix l = 7 and scan

over the discretization parameter L
6, to find a good ap-

proximation of the previous reference value. We then
consider a relative error to be Emeas�Eexact

Eexact
⌘ ✏ < 0.01

(where Emeas is the value of the quantity analysed with
fixed truncation and Eexact is the reference value). In
the interval of interest 1.4  �  100 we select which,
between electric basis (l = 7) and magnetic basis (l = 7
and L), gives us the lowest relative error. The results
are then used as cuts in the step scaling procedure, as
described in Section V. We also tested that even with a
smaller truncation l = 3, and higher discretization, we
can reproduce the same results, thus with a lower num-
ber of resources, high precision can be still guaranteed.
In the following section, we will show the data of the
static forces F (r1 = 1.0, g) and F (r2 = 2.236, g) with
l = 3, the other case follows a similar procedure.

The selection method systematically explores the po-
tential values of L with a fixed l for the magnetic basis.
In the top panel of Fig.19, we present the relative error
✏ for the quantity r

2
1F (r1 = 1.0, g) across various ranges

of g and L (horizontal axes). The results that satisfy the
condition ✏ < 0.01 are considered suitable for the scal-
ing approach and are highlighted with triangles markers.
Examining the bottom panel, which displays the same
data with a bi-dimensional perspective, we observe that
for small couplings, a discretization of at least L > 130
is required. Conversely, in the stronger coupling region,
the magnetic data demonstrate higher precision only for
specific values of L. This behaviour is in line with expec-
tations, as an increase in g should allow for the inclusion
of more states within the truncation, ultimately favour-
ing L = l + 1. However, the fluctuations are remarkably
pronounced and the optimal value of L strongly depends
on the considered value of g. Given the wide range of
couplings scanned during the step scaling process, ad-
justing discretization for minor intervals of g is deemed
ine�cient. Consequently, we opt for the magnetic basis
only with a stable configuration of input parameters.

6
The magnetic basis has the advantage of needing a lower trun-

cation when � � 1, but in general a more costly Hamiltonian.

• chemical potential
• Chern-Simons term
• Λ-parameter
• real time phenomena
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Chern-Simons term in 2+1 dimensional QED
(C. Peng, C. Diamantini, L. Funcke, A. Hassan, K. Jansen, Stefan Kühn, D. Luo, P. Naredi,

arxiv:2407.20225)

Ĥ =
∑

x∈ sites
e2

2a2

[(
p̂x;1 − ka2

4π Âx−2̂;2

)2
+
(
p̂x;2 +

ka2

4π Âx−1̂;1

)2]
+ 1

2e2

(
�Âx;1,2

)2
> energy bands

pure Maxwell theory adding Chern-Simons term

massless photon topological mass generation

> opens door to investigate e.g. fermion/boson dualities, fractional quantum Hall effect,

...
DESYª | Quantum Computing: , a future perspective , for scientific computing | Karl Jansen | CQTA, DESY Zeuthen , 16.1.2025 Page 60



1-loop QCD β-function

> running coupling in QCD in 1-loop order

αstrong(µ) = 1/
(
β0 log(µ

2/Λ2
QCD)

)
> β0 known constant
> ΛQCD QCD Λ-parameter
→ provides scale when perturbation

theory breaks down

→ scale when confinement sets in

> very important quantity

→ used in basically all experimental analysis

35 9. Quantum Chromodynamics

more than three jets in the final state. A selection of results from inclusive jet [429, 443, 600–605],
dijet [451], and multi-jet measurements [385, 387, 388, 429, 606–610] is presented in Fig. 9.3, where
the uncertainty in most cases is dominated by the impact of missing higher orders estimated through
scale variations. From the CMS Collaboration we quote for the inclusive jet production at

Ô
s = 7

and 8 TeV, and for dijet production at TeV the values that have been derived in a simultaneous
fit with the PDFs and marked with “*” in the figure. The last point of the inclusive jet sub-field
from Ref. [605] is derived from a simultaneous fit to six datasets from di�erent experiments and
partially includes data used already for the other data points, e.g. the CMS result at 7 TeV.

The multi-jet –s determinations are based on 3-jet cross sections (m3j), 3- to 2-jet cross-section
ratios (R32), dijet angular decorrelations (RdR, RdPhi), and transverse energy-energy-correlations
and their asymmetry (TEEC, ATEEC). The H1 result is extracted from a fit to inclusive 1-, 2-,
and 3-jet cross sections (nj) simultaneously.

All NLO results are within their large uncertainties in agreement with the world average and
the associated analyses provide valuable new values for the scale dependence of –s at energy scales
now extending up to almost 2.0 TeV as shown in Fig. 9.4.

αs(MZ2) = 0.1179 ± 0.0009

August 2021
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Figure 9.4: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

11th August, 2022
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1-loop QED β-function

> β-function in 2+1-dimensional QED in 1-loop order

β(α(µ)) = −g2 +Nfb1g
4

– g2 bare coupling in Hamiltonian

– b1 known constant

– Nf number of “flavours” (fermion degrees of freedom)

– β-function starts negative, ala QCD
⇒ confinement!
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Towards the Λ-parameter

> β-function recast

dµ
µ = dg(µ)/β(g(µ))

> integrated form with integration constant Λ∫ µ
Λ 1/µ′dµ′ = ln(µ/Λ) =

∫ g(µ)
g dg′/β(g′)

> computing the runnng coupling

→ obtain µ/Λ

> use inverse lattice as scale µ = 1/a

> need to convert to physical units

→ need the value of the lattice spacing

→ need, in particular small values of the lattice spacing
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Autocorrelations at small lattice spacing a

> Markov Chain Monte Carlo algorithms (MCMC)

→ intrinsic problem of autocorrelations

> prevents reaching small lattice spacing

→ only a > 0.05 feasible

> quantum computing

avoids autocorrelations

> also advantage over tensor networks?
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Encoding and quantum circuit

> discretizing group U(1)→ Z(2L+ 1)

> encoding of states, example L=1

| − 1〉ph 7→ |00〉
|0〉ph 7→ |01〉
|1〉ph 7→ |11〉

> electric field and link operators

Ê 7→ −|00〉〈00|+ |11〉〈11|,
Û 7→ |01〉〈00|+ |11〉〈01|,
Û † 7→ |00〉〈01|+ |01〉〈11|

> quantum circuit preserving zero charge sector

10
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Appendix A: Gray encoding variational circuits

As outlined in Section III A, the qubit requirement for
the adopted encoding follows a logarithmic scaling pat-
tern. Specifically, for certain values of l, the exclusion of
a single state su�ces and as a consequence, the complex-
ity of the required gate set for circuit implementation is
significantly reduced. The logic of the exclusion of states
outside the reduced Hilbert space H2l+1 for l > 1 mirrors
that of the l = 1 case. Moreover, when only one state
requires exclusion, a discernible pattern emerges in the
gate structure. In this section, we present the variational
circuits corresponding to l = 3, 7, 15, in Fig.13,14,15 re-
spectively.

|0i Ry(✓1)

|0i Ry(✓2)

|0i Ry(✓3) Ry(✓4)

FIG. 13: Variational circuit for Gray encoding with l = 3.
State excluded |100i and vacuum state=|010i.

|0i Ry(✓1)

|0i Ry(✓2) Ry(✓6)

|0i Ry(✓3)

|0i Ry(✓4) Ry(✓5)

FIG. 14: Variational circuit for Gray encoding with l = 7.
State excluded |1000i and vacuum state=|0100i.

|0i Ry(✓1)

|0i Ry(✓2) Ry(✓8)

|0i Ry(✓3) Ry(✓7)

|0i Ry(✓4)

|0i Ry(✓5) Ry(✓6)

FIG. 15: Variational circuit for Gray encoding with l = 15.
State excluded |10000i and vacuum state=|0100i.

The next step is to establish an appropriate frame-
work for the entanglement of multiple gauge fields. This
task is particularly essential when working with an elec-
tric(magnetic) basis formulation especially in regimes
characterised by weak(strong) coupling. In this study,
we devised a structure capable of entangling all fields,
while guaranteeing the selection of states within a re-
duced Hilbert space. In the future, our work will be
devoted to exploring even more resource-e�cient alterna-
tives. This exploration will involve a complete analysis
of the lattice itself, with the aim of further optimising
our approach and improving computational e�ciency.

Appendix B: �E

In this section, we report our investigation of the mass
gap �E with Monte Carlo simulations. We find numer-
ical evidence that the volume L/a = 3 used with the
present Hamiltonian formulation is too small to match
the mass gap of the theory. Nonetheless, we provide
some quantitative estimate of the coupling range needed
for this approach, finding that a slight increase in the
volume size on the Hamiltonian simulation would allow
for such a matching procedure.

A U(1) gauge theory in 2+1 dimensions is a non triv-
ial theory only at finite lattice spacing, where it can be
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Matching Langrangian and Hamiltonian
(Christiane Gross, Lena Funcke, Karl Jansen, Stefan Kühn, Simone Romiti, Carsten Urbach)

> matching suitable quantities

– plaquette expectation value

– “mass gap”

> matching through different procedures

– taking time direction towards infinity

→ remaining time lattice spacing at effects
– taking also limit at → 0
→ demanding procedures

> action on lattice woith space L and time T extend: S = βs
∑

xx�xx + βt
∑

xt�xt

> �xx space-like plaquettes, βs coupling in space

> �xt spacetime-like plaquettes , βt coupling in space time
βt →∞ : at → 0
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Matching Monte Carlo and quanrum computing
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5

FIG. 3: DRAFT:(top) Plaquette expectation value for
3⇥3 PBC system: exact diagonalisation results with trun-
cation l 2 [1, 4] (lines with low triangles or solid line) and
variational results with l = 1 (dots). The dotted vertical
line corresponds to � matching with MC. (bottom) Relative
error ✏: Comparison between variational data and exact re-
sults.

For the variational approach, we have developed a
quantum circuit with an entanglement structure connect-
ing all gauge fields, thus improving its expressivity. As
illustrated in Fig. 3, the top panel shows the variational
results for truncation l = 1, indicated by dots, along with
the relative error with respect to the exact values. We
are currently engaged in investigating potential reduc-
tions in the number of quantum gates. This exploration
has a dual purpose: to improve our understanding of the
interaction between circuit and lattice structure and to
prepare for analysis on quantum hardware platforms. For
the variational analysis, we employ the NFT [34]/SLSQP
classical optimizer and 104/no shots. ADD CITATION
OPTIMIZER. After applying Gauss’s law only 10 of the
18 links remain dynamical thus we need 20 qubits for the
computation. Table I shows the resource estimates for
both l = 1 and l = 3 truncations.

Resources Estimation 3⇥ 3 PBC system
l n. qubits CNOT CNOT Depth Parameters
1 20 1280 1152 200
3 30 2200 1748 445

TABLE I: Resources required for the variational cir-
cuit for Gray encoding: In a 3⇥3 PBC the ten dynamical
gauge fields can be simulated with the specified total number
of qubits. Additionally, we quantify the total count of CNOT
gates and the CNOT depth, representing the layers of CNOT
gates in the circuit. The rightmost column displays the total
number of parameters in the variational ansatz.

V. RESULTS: STEP SCALING APPROACH

The step scaling approach is a computational method
employed for the determination of the running coupling
[5, 35]. In this context, we use the static force as the
physical quantity of interest, focusing in particular on
the dimensionless quantity r

2
F (r, g), with g the bare cou-

pling at which the force is computed and r the distance
between two static charges. The calculation of the static
force involves the application of a discrete derivative, ap-
proximated as @V

@r ' V (r2)�V (r1)
r2�r1

, where V (ri) denotes
the static potential between two static charges separated
by ri. For the analysis of the step scaling, we need two
values of the static force,

r
2
2F (r2, g) =

V (r3, g) � V (r2, g)

r3 � r2
,

r
2
1F (r1, g) =

V (r2, g) � V (r1, g)

r2 � r1
.

(17a)

(17b)

Therefore, it is necessary to consider three distances,
namely r1, r2 and r3. The two distances r1, r2 can
be related by a scale factor s, such that r2 = s · r1,
then a running coupling at these scales can be defined
by ↵ren(r1, g) = r

2
1F (r1, g) and ↵ren(r2, g) = r

2
2F (r2, g)

respectively. In this paper, we will illustrate the method-
ology for an Open Boundary Conditions (OBC) system
of 3⇥3 sites, consisting solely of gauge fields. Two static
charges of opposite values are placed on two sites, as in
Fig.4. We will focus on two sets of distances to gener-
alise any findings regarding the coupling trend.4 In the
following analysis, a variational approach was used to
calculate the static potential at di↵erent distances and
the results were compared with those derived from exact
diagonalisation. The results presented here were com-
puted with a combination of two classical optimizers: we
performed a first minimisation with NFT, which gave us
fidelity up to ⇠ 95% (simulation with shots ⇠ O(104)).
However, as the coupling decreases, greater precision in
the variational results becomes necessary. Consequently,
we used the final optimal parameter as a starting point
for a new optimisation with COBYLA [36] and a larger
number of shots (⇠ O(106)). This aspect is crucial for
our objectives, as the values of the static forces in the
weak coupling regime are almost equivalent. In Table II,
we show the resource estimation for three values of the
truncation parameter l.

4
We have tested all the combinations for the five possible distances

for two static charges on a pure gauge lattice C(5, 3) = 5!
3!(5�3)! ,

and chosen the two with more points in the step scaling procedure

below a certain threshold for the bare coupling, i.e. �  10
2
.

matching plaquette ED and VQE results for different L
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Running coupling (demonstration for pure gauge theory)

> physical distance rphys = arlatt
→ lattice spacing a from large volume Monte Carlo simulations

(here using an artificial value)

> physical distance rphys implicitly given through bare coupling g

> coupling from static force α(r = 1/µ) = r2F (r, g)8

1. Start from � = 1.4 to perturbative regime

The step scaling procedure is illustrated in Fig.8 in the
fixed bare coupling interval. In this case, four distinct
results corresponding to the steps are observed within
the range 1.4  �  100.

FIG. 8: Step scaling results for static forces F (r1 =
1.414, g) and F (r2 = 2.236, g), electric basis and l = 1:
From �MC = 1.4 and in a range of couplings within � = 100,
the static forces are computed following a steps procedure,
both with ED and VQE (simulations with shots). ED results,
dots (squares) for r21F (r1 = 1.414, g) (r22F (r2 = 2.236, g)) and
corresponding variational results up triangles (low triangles).
In the simulations, a sequential combination of two optimizers
NFT and COBYLA was considered and a finite number of
shots defines the error bars.

We apply the same technique with higher truncations,
for the set of distances, Fig.9. Also in such a case, we
consider l = 7 for the electric basis and l = 3, L = 200
for the magnetic, obtaining a total of five points.

FIG. 9: Step scaling results for static forces F (r1 =
1.414, g) and F (r2 = 2.236, g), electric (magnetic) ba-
sis and l = 7 (l = 3, L = 200), with relative error
✏ < 0.01: results with electric basis (orange circles for F (r1)
and red squares for F (r2)) with truncation value l = 7 and
with magnetic basis (blue up triangles for F (r1) and light blue
down triangles for F (r2)) with l = 3 and discretization values
L = 200.

C. Towards defining a physical scale

From our knowledge, a real experiment for 2-
dimensional QED that can provide physical quantities
for the computation of the lattice spacing does not exist
yet, thus we consider an artificial value for lattice spacing,
e.g. a=0.1 fm: Karl, and we use the data in the previous
sections to identify the physical value for the coupling.
With two sets of distances, we have two scale factors s
to connect r1 and r2, (r2 = s · r1), i.e. r2 = 2.23 · r1 and
r2 = 1.58 · r1. We then combine the results in a single
plot.

Let us first consider the set r1 = 1.0, r2 = 2.236,
r3 = 2.828. Our aim is to start with �MC and invert the
sequence by changing the scale by s and include the phys-
ical value of the lattice spacing, a = 0.1fm. At �MC ⌘ �N

we have,

�N 7!
⇢

r1,phys = r1 · a = 0.1fm,

r2,phys = r2 · a = 0.223fm.

(18a)

(18b)

Then we go to the next value of the bare coupling, where
we have,

�N�1 7!
⇢

r1,phys = r1 · a/s = 0.045fm,

r2,phys = r2 · a/s = 0.1fm.

(19a)

(19b)

The procedure iterates through multiple steps, and even-
tually, the static force values correspond to a physical
scale, as depicted in Fig.10, with data from Fig.6,8. Note,
for example that Eqs.18a,19b, correspond to the same
physical scale (rightmost dot and second rightmost low
triangle).

9

FIG. 10: Step scaling exact diagonalization results
(electric basis and l = 1): set of static forces F (r1 =
1.414, g) and F (r2 = 2.236, g) (squares and up triangles) and
F (r1 = 1.0, g) and F (r2 = 2.236, g) (circles and low trian-
gles). The ED results are rewritten in terms of physical dis-
tances.

We can replicate the procedure using the outcomes
from the variational approach (again Fig.6,8), as depicted
in Fig.11. Despite fluctuations in the results, attributed
in part to the limited number of shots, the data e↵ec-
tively captures the trend of the running coupling.

FIG. 11: Step scaling variational results (electric ba-
sis and l = 1): set of static forces F (r1 = 1.414, g) and
F (r2 = 2.236, g) (squares and up triangles) and F (r1 = 0, g)
and F (r2 = 2.236, g) (circles and low triangles). The varia-
tional results are rewritten in terms of physical distances.

The procedure is repeated also for the analysis with
electric and magnetic basis, using the data from Fig.7,
Fig.9 and combining them in Fig.12.

FIG. 12: Step scaling exact diagonalization results
(electric basis l = 7 and magnetic basis l = 3, L =
200): set of static forces F (r1 = 1.414, g) and F (r2 =
2.236, g) (squares and up triangles) and F (r1 = 1.0, g) and
F (r2 = 2.236, g) (circles and low triangles). The exact re-
sults are rewritten in terms of physical distances.

In our current analysis, which focuses exclusively on
pure gauge theory, we are unable to extract any physical
behaviour. However, by incorporating fermionic matter
into our study, we expect to observe distinctive phenom-
ena. In particular, at small physical distances, we expect
to observe asymptotic freedom, while confinement is ex-
pected at larger distances. This transition will o↵er valu-
able insights into the underlying dynamics of the system
and further improve our understanding of its behaviour
at various length scales.

VI. DISCUSSION

PBC 3x3: if only plot w/o shots: comment that we
are working on results with shots and future hardware
implementations.

In this study, we presented the integration of classi-
cal Monte Carlo simulations with quantum calculations.
Currently, MCMC calculations can be performed on sig-
nificantly large lattices, but their ability to reach small
distances between lattices remains limited. In contrast,
quantum calculations, employing the Hamiltonian formu-
lation, theoretically possess the potential to operate on
arbitrary lattice spaces. continue..
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running coupling as function of g as function of physical distance
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Scattering on a quantum computer
(Yahui Chai, Arianna Crippa, Karl Jansen, Stefan Kühn, Ivano Tavernelli, Francesco Tacchino,

arxiv:2312.02272 )

> Continuum Lagrangian of Thirring model

L = iψγµ∂µψ −mψ(x)ψ(x)−
λ

2
(ψγµψ)(ψγ

µψ)

> Hamiltonian lattice version

H =

N−1∑
n=0

{
i

2a

(
ξ†n+1ξn − ξ

†
nξn+1

)
+ (−1)nm ξ†nξn

}
+

N−1∑
n=0

g(λ)

a
ξ†nξnξ

†
n+1ξn+1

> Spin representation→ Jordan Wigner
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Spin representation

> Jordan-Wigner transformation

ξ†n =
∏

l<n σ
z
l σ

−
n , ξn =

∏
l<n σ

z
l σ

+
n

σ±l =
(
σxl ± iσ

y
l

)
/2

> Hamiltonian

H =
i

2a

N−2∑
n=0

(
σ−n+1σ

+
n − σ−n σ+n+1

)
+

i

2a

(
σ−0 σ

z
1 . . . σ

z
N−2σ

+
N−1 − σ

−
N−1σ

z
N−2 · · ·σz1σ+0

)
+
m

2

N−1∑
n=0

(−1)n (1− σzn) +
g

4a

N−1∑
n=0

(1− σzn)
(
1− σzn+1

)
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Gaussian wave packets

> Gaussian wave packets φ
c(d)
k = 1

N c(d)
k

e−ikµ
c(d)
n e−(k−µ

c(d)
k )2/4σ2

k

> time evolution: Givens rotation

> time evolution for free fermions: charge distribution
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Quantum circuit

> blue box: vacuum preparation

> green and yellow boxes: wave packet preparation and time evolution
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Interacting case
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Hardware runs

> Ideal versus hardware
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FIG. 8. (a) particle density for N = 12 and m = 1.0 as a
function of time obtained from an ideal simulation. (b) Same
as panel (a), but with the time steps at t = 0, 6, 12, 18, 24
replaced by the ones obtained from the quantum hardware
(indicated by the gray dashed boxes).

agreement between the exact result and the experimental
data from the quantum device, in most cases both results
agree within the error bar. In particular, the time-slices
for the particle density illustrate once more the presence
of two separated wave packets, showing up as a peak in
the particle density around site 2 and a dip at site 9 for
t = 0 (c.f. Fig. 9(a)). These are moving towards the
center as time progresses resulting in a particle density
noticeably di↵erent from zero in the center of the system,
as shown in Fig. 9(b). Eventually, after the two wave
packets pass through each other, we observe again a well
separated peak and a dip in the particle density around
t = 18 in Fig. 9(c).

V. CONCLUSION AND OUTLOOK

In this work, we proposed a framework for studying
fermion scattering on digital quantum computing. Using
the lattice Thirring model as an example, we demon-
strated our framework by simulating the elastic collision
for fermion-antifermion wave packets both classically and
on quantum hardware.

Guided by the free theory, corresponding to the
Thirring model at vanishing coupling, we derived a set
of operators that allow us to create approximate fermion
and antifermion wave packets for the interacting theory
on top of the ground state. Starting from such an initial
state, we showed how to e�ciently obtain the expected
value of observables from a quantum device throughout
the evolution and provided the necessary quantum cir-
cuits to measure them.

To demonstrate our approach, we first simulated the
dynamics of a fermion-antifermion wave packet in the
free theory exactly before proceeding to the interacting
case. Observing the particle density and the von Neu-
mann entropy produced throughout the elastic scatter-
ing, we characterized the process and showed that our
framework provides an avenue towards simulating these
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FIG. 9. Time slices showing the site-resolved particle density
for N = 12 and m = 1.0, the di↵erent panels correspond to
t = 0 (a), 12 (b), and 18 (c). The blue diamonds correspond
to the ideal result on a noise-free quantum computer taking
an infinite number of measurements. The yellow dots repre-
sent the data from the quantum hardware, where error bars
represent uncertainties due to a finite number of measure-
ments. As a guide for the eye, the data points are connected
with lines. The horizontal dashed grey line indicates the zero
value of �h⇠†n⇠nit.

dynamics on quantum devices. While the entropy can
in general not be obtained e�ciently on a quantum de-
vice, the particle density can be readily measured on a
digital quantum computer. Moreover, we carried out a
proof-of-principle demonstration simulating the scatter-
ing of a fermion and an antifermion wave packet for the
free theory on IBM’s quantum devices. Using state-of-
the-art error mitigation methods, the data obtained from
the quantum device is in good agreement with the the-
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Quantum computing inspired paintings: reinterpreting
classical masterpieces
(Arianna Crippa, Yahui Chai, Omar Costa Hamido, Paulo Itaborai, Karl Jansen,

arXiv:2411.09549)

> a journey from classical art to abstraction

Caravaggio: “Narciso” Magritte: “Le fils Richter: “192 Fraben”

de l’homme”

→ →
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Numerical methods

> physical system: ising model

H =
∑N−1

n=0 JnZnZn+1 +
∑N−1

n=0 hz,nZn +
∑N−1

n=0 hx,nXn

> Trotterization

|ψ(t)〉 = U(t) |ψ(0)〉 ≡ e−iHt |ψ(0)〉 , U(t) ≈
∏k∏N−1

n=0 e
−iHnt/k

> quantum circuit

quantum circuit Trotter step
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Principle of quantum art transformation

> tiling the painting

In our revisited version,  a young
boy is looking intensely at his
reflection. He is observing a new
chaotic shape, changed by the
results of a quantum
computation. 

This newly disturbed water also
engages in analogy to the wave
function collapse, where the
superposition of multiple
eigenstates, gets reduced, by
means of observation – as
the boy does – to what we
can actually observe and 
measure.

NUMERICAL METHODS RESULTS

 Arianna Crippa, Yahui Chai, Omar Costa Hamido, Paulo Itaborai, Karl Jansen 

Ising Hamiltonian

time evolution (Trotterization)

with

“Quantum Transformation II: Magritte” digital image
grid: (20x16)

device: ibm_sherbrooke/ibm_strasbourg  
(4096 shots)

“Quantum transformation III: Richter” oil on 
wooden panel (size: 75 × 100 cm)

grid: (16x12)
device: ibm_nazca (4096 shots)

 The discrete units, the lattice tiles, are
then encoded to qubits. 

The original paintings are analyzed and divided partly or as a whole
into a lattice. 

QUANTUM

CIRCUIT

ABSTRACT

We aim to apply a quantum computing technique to compose artworks. From a classical subject to abstract forms, we seek to combine
classical and quantum aesthetics through three art pieces. Our goal is not only to render digital media but to reproduce these works as

physical oil paintings on wooden panels, completing a full circle between classical and quantum techniques and contributing to
rethinking Art practice in the era of quantum computing technologies.

“Quantum Transformation I: Caravaggio” oil on 
wooden panel (size: 70 × 84 cm)

grid: (13x16)
device: ibm_kyoto (4096 shots)

We apply the quantum process
to the entire painting (again, as
the conceptual surface of
reflection) displacing all of its
elements, with the exception of
the apple in front of the man’s
face.

With this process of
displacement, we are led to

imagine the features of the face
that now become unveiled.

We time evolve the grid of
192 colors.

The final resulting artwork
depicts the same colors of
the original composition
but reordered with quantum
results.

FROM REALISM

TO ABSTRACTION

Observables

with

“192 Farben”:

with

  “Narciso” and “Les fils de l’homme”:

(QC-PAINT)

OUR PAPER:

> re-ordering

> transformation
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Caravaggio

> Transformation I: Caravaggio

“Quantum Transformation I: Caravaggio” (oil on wooden panel): This photograph of

the oil painting illustrates how the reflection (lower part) has been modified by

translating the results from quantum computation. Panel size: 70 × 84 cm.

DESYª | Quantum Computing: , a future perspective , for scientific computing | Karl Jansen | CQTA, DESY Zeuthen , 16.1.2025 Page 78



magritte

> Transformation II: Magritte

The painting “Quantum Transformation II: Magritte” (digital image): The entire picture

is modified by the quantum time evolution. The only element that remains untouched

is the green apple.
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Transformation III: Richter

The painting “Quantum Transformation III: Richter”: (panel (a)) The original version titled “192

Farben” (digital reconstruction): The image has been produced digitally based on the original

painting. (panel (b)) The revisited version (oil on wooden panel, foto). Panel size: 75 × 100 cm.
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The Variational Quantum Harmonizer
(Paulo Itaborai, Peter Thomas, Arianna Crippa, Karl Jansen, Tim Schwägerl, Maria Aguado)

> encoding a harp

April 13, 2024 11:25 cls/ws-book9x6-9x6 My Book Title output page 10

10 My Book Title

Fig. 1.2: A 3-qubit harp

In this 3-qubit Harp, the two first qubits are playing, while the third one
remains silent. To configure this scenario as the ground state following the
execution of the VQE algorithm, a cost function has to be designed with a
QUBO coe�cient matrix, so that it yields the desired outcome. There are
two strategies for formulating a QUBO problem, both capable of achieving
this end result. The first one involves tuning the linear coe�cients ai,
assigning a value of �1 to the playing qubits and 1 to the silent one. This
means that the third qubit’s linear coe�cient is being penalized, since it
increases the cost function, whereas the algorithm aims at minimizing it.
This first QUBO matrix would be then implemented as follows in Eq.1.10
9,

Q(n) = �n1 � n2 + n3 =
�
n1 n2 n3

�
0

@
�1 0 0
0 �1 0
0 0 1

1

A

0

@
n1

n2

n3

1

A . (1.10)

The second approach builds the QUBO problem tuning the quadratic
coe�cients bij instead. By penalizing the interaction between the silent
qubit with respect to the playing ones, and favouring the interaction be-
tween the first two, as in Eq.1.11, the desired ground state can be reached.

Q(n) =
�
n1 n2 n3

�
0

@
0 �1 1

�1 0 1
1 1 0

1

A

0

@
n1

n2

n3

1

A . (1.11)

Another way of visualizing the quadratic coe�cients is by looking into
the Ising Hamiltonian that is created from the QUBO coe�cients (Eqs. 1.4-
1.5). In this simple example, the Ising Model would characterize 3 spins.

9Note that the variables n can take either value 1 or 0, so that n
2
i = ni.

> encoding a chord

Variational Quantum Harmonizer

Gestural 
Control 

Interface

Sound Generation and 
Amplification System

Mapping

QUBO

VQE Data
Sonification 
Strategies

5
> Hamiltonian (0,1)→ (-1,1)

H(Z) =
∑N

i aV QE
i Zi +

∑N
i

∑N
j<i b

V QE
ij ZiZj

→ same as for flight gate assignment
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Chord progression

> A I-IV-V-I chord progression

> using Cobyla optimizerExample 2: I-IV-V-I 
Linear Chord 
Progression 

> hopefully a link to listen
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Optimizers

> How optimizers sound

NFT SPSA

> hopefully a link to listen
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VQH live as musical intrument
> VQH instrument

April 13, 2024 11:25 cls/ws-book9x6-9x6 My Book Title output page 21

Developing a Framework for Sonifying Variational Quantum Algorithms 21

the VQH in a way that enables sonifications to be experimented on-the-fly,
during a musical performance. Moreover, it could also enable researchers
on Quantum Simulation problems to sonify their research while an exper-
iment is running, providing them with a real-time auditory display of an
experiment.

To that end, the Variational Quantum Harmonizer became structured
as a modular musical instrument, or in a broader sense of the word, an
interface for music expression.

1.4.1 VQH Blueprint

Based on the classification / characterization system for Digital Musical
Instruments proposed by [Miranda and Wanderley (2006)], it is possible to
represent the VQH by separating the elements related to Control, Mapping
and Synthesis16. In a first layer of this illustration (Fig. 1.15), it is possible
to note that the VQH has one control interface, two mapping stages, and
one synthesis engine17.

Fig. 1.15: VQH as a musical interface

In more detail, the terminology employed in the components of the VQH
is explained: When considering a general VQA algorithm, the main input
of the system is the Hamiltonian of a system (Problem), where the energy
expectation values to be minimized are extracted from (Control). This
Hamiltonian is described as a list of operators decomposed as Pauli tensor
products. The first mapping stage deals with polling data from the iter-
ations of the VQA (Generation), which could be running with a QASM
Simulator or in a real device (Platform) and decoding the information that
will be used as a data stream for sonification (Protocol). Then, this data

16Note that in a final implementation of the a musical interface, there might be no clear
separation between, control, mapping and synthesis, as each component might serve in
several roles across the system
17Potentially, the synthesis side can be implemented in any known synthesis platform
or music programming language

> how it looks

in live performance

April 13, 2024 11:25 cls/ws-book9x6-9x6 My Book Title output page 41
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the-fly, swapping out the underlying datasets and using them as the basis
for further improvisation. This symbolizes the librarian’s search through
di↵erent rooms and texts. The composition’s structure mirrors the opti-
mization procedure found in the VQH algorithm, progressing from a state
of meaningless noise to a stable truth.

1.7.1.1 Generating Data

The VQH is operated during the performance to generate new books. Start-
ing from simple linear QUBO matrices, and evolving in complexity to
highly interconnected Ising systems with the inclusion of external Trans-
verse Fields and non-linear coe�cients (see sec. 1.4.2.1), a set of one to
three new experiments was run for each section of the piece. Based on the
current status of the piece, a new QUBO is designed and a classical opti-
mizer selected. The choices are made with the intention to provoke musical
gestures and variability. The parameters were controlled using a text-based
approach, as the one illustrated in Fig. 1.26

Fig. 1.26: VQH Interface for Hexagonal Chambers

As the VQH generates new data, they are uploaded to a purpose-built,
remotely-hosted API. The VQH mapping function makes a HTTP POST

call to an API endpoint. The API accepts new datasets, or books, and
stores them as single entries in the database. Zen was modified to be able
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Quantum music

> International conference on quantum music in Berlin, 5th/6th of October
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Examples of quantum music

> CTM Festival, January 2024

CTM event

> Rasgar, Saber (2022-23) - by Paulo Itaborai

Rasgar, Saber

> ReVeR (2023) - by Paulo Itaborai and Dino Vicente

ReVeR

> Hexagonal Chambers (2023-24) - by Cephas Teom and Paulo Itaborai

Hexagonal Chambers

> Premiere of ”Dependent Origination” at IKLECTIK, London:

Dependent Origination

> Performance of ”Dependent Origination” at the ICFO Quantum Sounds Symposium

Dependent Origination
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The CQTA group
> The group in Zeuthen in September 2021
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The CQTA group
> The present group in Zeuthen (missing 3 female members)
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The pillars of CQTA
> Quantum Field Theoretical models from condensed matter and high energy

physics→ sign problem, real time phenomena
> Optimization/classification

– Particle track reconstruction/jet classification

– Flight gate assignment

– Gene/exon classification
> Quantum art

– Quantum music, Quantum painting
> Others

– factoring, Feynman diagrams, matrix models, ...

> training
> Algorithm development

– Expressivity

– controllability

– warm starts
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Phase 1: visibility→ Brandenburg Roadmap

Federführend:

Dr. Karl Jansen

Dr. Anne Techen

Übergabe: 24.9.204
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Auf dem Weg zu einer gemeinsamen 
Quantentechnologie Hauptstadtregion: 
Quantentechnologie Roadmap Brandenburg   
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Vorwort 

Quanteneffekte bilden die Grundlage für moderne Techniken wie z.B. Mikrochips, Laser oder 
Satellitennavigation. Quantentechnologien (Sensorik, Kommunikation, Computing, 
Materialien) der zweiten Generation werden unser Leben durch neue Erkenntnisse, 
Produkte und Dienstleistungen zukünftig nachhaltig und revolutionär verändern. Sie sind 
Impulsgeber und öffnen die Türen für Innovationen in der Grundlagenforschung sowie in 
einer Vielzahl von Anwenderbranchen wie u.a. in der Gesundheitswirtschaft, Mobilität, 
Logistik, Batterieforschung oder im Finanzwesen. Ihr Potenzial wird von Experten und 
Expertinnen als disruptiv und einschneidend für die Gesellschaft, bestehende Märkte, der 
Wissenschaft und die Wirtschaft bewertet. 
 
Sichere Kommunikation, eine schnellere Datenverarbeitung, disruptives Computing oder 
auch neue Sensoren sind nur einige Beispiele für die enorme Leistungsfähigkeit dieser 
Schlüsseltechnologie.  
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Phase 1: visibility→ Brandenburg connections

> Brief von Herrn Saule, WFBB, an Staatssekretär Dünow

– mögliche Förderwege für die zweite Phase des „Zentrums für Quantentechnologie und

Anwendungen (CQTA) – Zeuthen“ identifizieren und schaffen

– die Verankerung der Quantentechnologie in der brandenburgischen

Forschungslandschaft vorantreiben und sicherstellen (z.B. neue Professuren, Anreize für

hochschulübergreifenden Kooperationen, etc.)

– Bereitschaft zeigen, Quantencomputer-Hardware in Brandenburg aufzustellen und zu

betreiben

– eine Brücke zu den Berliner Quantentechnologie Aktivitäten bauen und unterstützen (evtl.

Chance auf neue, gemeinsame Förderprogramme)

– Unterstützung und Sichtbarmachung der Brandenburger Quantentechnologieaktivitäten

auf Bundesebene

> Kooperation mit TH Wildau, IHP Frankfurt, Einstein Research Unit Berlin, ...

> Austausch mit Rössler (Photonic Cluster), Paluszynski (MWFK), Dünow (MWFK), ...
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ERA Chair QUEST
(QUantum computing for Excellence
in Science and Technology)

> European Research Executive

Agency funding (2.5 million Euro)
> focus activities

– Building up a quantum computing group

at the CyI

– develop applications of uses case

for industry, governmental agencies

and academia

– Act as hub for Eastern Mediterranean region

– closely connected to

Center for Quantum Technology

and Applications (CQTA) at DESY
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The CQTA group
> The present group at the CyI under the ERA Chair

> Assistant professor to be recruited beginning of 2025

DESYª | Quantum Computing: , a future perspective , for scientific computing | Karl Jansen | CQTA, DESY Zeuthen , 16.1.2025 Page 96



QC4HEP whitepaper, arXiv:2307.03236

Quantum Computing for High-Energy Physics
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37Instituto Superior Técnico, Dep. F́ısica, Lisboa, Portugal

38Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Lisboa, Portugal,
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Abstract

Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural

sciences and beyond, with the potential for achieving a so-called quantum advantage, namely a significant

(in some cases exponential) speed-up of numerical simulations. In particular, the high-energy physics

community plays a pivotal role in accessing the power of quantum computing, since the field is a driving

source for challenging computational problems. ...
DESYª | Quantum Computing: , a future perspective , for scientific computing | Karl Jansen | CQTA, DESY Zeuthen , 16.1.2025 Page 97



QC4HEP: Experiment summary
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QC4HEP: Theory summary
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Quantum computing enhances biomarker discovery
(Frederik Flöther, Daniel Blankenberg, Maria Demidik, Karl Jansen, Raga Krishnakumar, Rajiv

Krishnakumar, Numan Laanait, Laxmi Parida, Carl Saab, Filippo Utro, arXiv:2411.10511)
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Summary and outlook

> It took 40 years to start realizing Feynman’s vision of using quantum computers

> Now: first computations in high energy physics with O(10) qubits on NISQ devices

– experiment: particle tracking, Boltzmann machines, quantum neural networks, ...

– theory: low-dimensional, abelian and non-abelian models

in 1+1 and 2+1 dimensions, scattering, ...

> soon: demonstrations, O(100) qubits and circuit depth of O(100)

– identify and evaluate applications for quantum computers

– develop further quantum algorithms and methods

– evaluate scaling with the number of qubits

→ quantum advantage? for what? when?

> future: fault tolerant quantum computing

Quantum Computer Music (2022)
Eduardo Reck Miranda (Editor)
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Thank you!

Contact

DESYª Deutsches Karl Jansen

Elektronen-Synchrotron 0000-0002-1574-7591
Center for Quantum Technologies and Applications
karl.jansen@desy.de

www.desy.de +49–33762–77286
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