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The VQE, introduced as an alternative to quantum phase
estimation [36], aligns with the capabilities of current
and near-term quantum devices. We test our VQE us-
ing noiseless classical simulations between 6 to 12 qubits,
to identify the best possible setup regarding the ansatz
and gates that would capture the relevant ground states
most e�ciently. After the optimal ansatz-gate combina-
tion and variational parameters are found, the ground
states across the phase transition are prepared on IBM’s
quantum devices. We deomstrate that using state-of-the-
art error mitigation techniques—zero noise extrapola-
tion [37], readout error mitigation [38], Pauli twirling [39]
and dynamical decoupling [40]—allows for obtaining pre-
cise results from the quantum measurements. To under-
stand the minimum system sizes required to extrapolate
faithfully to the continuum limit with a quantum com-
puter, we use matrix product states (MPS). We numeri-
cally simulate intermediate system sizes and perform the
continuum extrapolation, which we compare to analytical
results. Our study also shows universality for the consid-
ered observables, as both discretizations lead to the same
continuum values.

The rest of the paper is structured as follows. In
Sec. II, we briefly introduce the Schwinger model and
review its phase structure in the presence of a topolog-
ical ✓-term. Moreover, we discuss two di↵erent ways of
discretizing it on a lattice using Wilson and staggered
fermions. We proceed with presenting our ansatz for
the VQE as well as the MPS techniques we use to esti-
mate the resources for taking a reliable continuum limit
in Sec. III. Our numerical results demonstrating the per-
formance of the ansatz in various parameter regimes are
presented in Sec. IV, before concluding in Sec. V.

II. THE SCHWINGER MODEL

The Schwinger model describes quantum electrody-
namics in (1+1)-dimensions coupled to a single, massive
Dirac fermion [25]. Here we briefly introduce the Hamil-
tonian formulation and review its phase diagram in the
presence of a topological ✓-term. We then discuss two
di↵erent discretizations for the fermionic matter fields of
the model, namely Wilson and staggered fermions.

A. Hamiltonian formulation in the continuum

The continuum Hamiltonian density of the Schwinger
model in the presence of a topological ✓-term is given by
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where  (x) is a two-component Dirac spinor describ-
ing the fermionic matter. The spinor components,  ↵,
↵ = 1, 2, fulfill the standard fermionic anticommuta-
tion relations { †

↵(x), �(y)} = �(x � y)�↵� . The gauge

field Aµ, µ = 0, 1, mediates the interaction between the
matter fields. Here we have chosen the temporal gauge,
A0 = 0, hence only the spatial component A1 appears in
the Hamiltonian. The parameters m and g are the bare
fermion mass and the coupling between fermions and the
gauge fields. The matrices �µ are two dimensional ma-
trices obeying the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ , with
⌘ = diag(1, �1), and  corresponds to  †�0. The phys-
ically relevant gauge invariant states of the Hamiltonian
have to fulfill Gauss’s law

�@1Ȧ
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where �Ȧ1 is the electric field and g �0 represents the
charge density.

The topological term, g✓/2⇡, appearing in the Hamil-
tonian corresponds to a constant background electric field
whose e↵ect has been assessed both theoretically and nu-
merically. Coleman argued that the physics of the model
is periodic in ✓ with a period of 2⇡, and that above a cer-
tain critical mass, mc/g, the model undergoes a first or-
der quantum phase transition at ✓ = ⇡ [30]. This picture
was later on confirmed in numerical simulations, where
it was found that the critical line ends in a second-order
quantum phase transition at mc/g ⇠ 0.33 [29, 34, 41].
Figure 1 provides a sketch of the phase diagram, high-
lighting the first-order phase transition line, which cul-
minates with a second-order phase transition at mc/g.
The physics of the model can also be understood qual-

FIG. 1. Illustration of the phase diagram of the Schwinger
model in the presence of a topological term in the m/g � ✓
plane. Since the physics is periodic in ✓ with period 2⇡, only
the first period is shown. The critical line (shown in black)
indicates the first-order phase transitions occurring at ✓ = ⇡
for masses larger than the critical one mc/g ⇡ 0.33, which
ends in a second-order phase transition (green dot) exactly at
mc/g. Below the critical mass no transitions occur.

itatively in an intuitive picture. For large values of the
mass in units of the coupling, m/g � 1, it is generally
unfavorable to generate charged particles. In the regime


