Constraining the Higgs boson mass:
a non-perturbatice lattice study

Karl Jansen _NLCL

in collaboration with
John Bulava, Philipp Gerhold, Jim Kallarackal, Attila Nagy

e Why Higgs-Yukaw model on the lattice?

e Higgs-Yukawa sector at physical values of the top quark mass

— Non-perturbative lower and upper Higgs boson mass bounds
— Higgs boson resonance parameters

e Higgs-Yukawa sector at very heavy fermion masses

— Non-perturbative lower and upper Higgs boson mass bounds
— non-zero temperature

e Conclusion



The evidence for a scalar particle at the LHC
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Theoretical bounds on the Higgs boson mass
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e upper bound from triviality

e lower bound from vacuum instability



Why a lattice calculation?

e upper Higgs boson mass bound:
— coupling can become strong,
a priori unclear whether perturbation theory is valid

e lower bound:
— Is vacuum instability an artefact of perturbation theory?

e 4th generation: also Yukawa coupling can become strong
— what are the effects on the mass bounds?



The scalar lattice action

e continuum action
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e lattice scalar action (setting lattice spacing a =1 )



Chiral invariant Higgs-Yukawa lattice action (Liischer)
e the lattice fermionic and Yukawa parts
(Lr + Ly)[Y,¥] = ¥ Deytp + s (£,0) , obr + y¢ (£,0) , $tr + c.c.

e change from continuum:

Y0, — Doy A

- Pr=358 5 P =55 45 = 55 (1 — aDoy)

e exact lattice SU(2)p chiral symmetry: V5D, + Dovys = aDoyvys Doy

Ginsparg-Wilson relation overlap operator D, Neuberger

W — Pop + QP o, ) — PO + P
6 — oQL, ot = Qrot, Qe Su(2)

e fully emulates Higgs-Yukawa sector of the standard model



The algorithm

Usage of Polynomial Hybrid Monte Carlo Algorithm (Frezzotti, K.J.)

Improvements (Gerhold):

e special preconditioning techniques for fermion matrix:
— factors of O(10)-O(100) improvement for condition number

e Fourier acceleration

FACC | traLength | Nconf ACtime cost
k= 0.12313 No 2.0 2020 | 132.1+6.4 | 2662 + 129
k=0.12313 | Yes 2.0 21780 | 1.1 +0.1 37+ 1
xk = 0.30400 No 1.0 2580 | 34.9+ 2.1 450 4+ 28
x = 0.30400 | Yes 1.0 22360 | 3.8 +£0.2 171 £8

e exact Krylow space reweighting

e multiple time scale integrators




e renormalization constant from Goldstone propagator {G

Physical setup

physical input Higgs boson expectation value v,./a = 246 GeV
top and bottom quark masses: m;/a ~ 175 GeV, my/a ~ 4.2 GeV

2
mpg

renormalized quartic coupling: A = —3
2

m¢ b

renormalized Yukawa couplings: v, =

Uy

setting the value of the lattice spacing 246 GeV =

Present setup

gauge fields are neglected

e mass degenerate quark doublet

(check of effect by lattice perturbation theory)
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Lower bound

very useful guidance and theoretical control from lattice effective potential
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Lower bound

self-consistent determination of vacuum expectation value

0 = dUsesr/dv = —m?v — 4M0® — & (Uipupe [v] + Up[0])
and Higgs boson mass
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Finite size effects
Goldstone bosons induce significant finite size effects of the form

(p) ) (L 2) = A(p) (p%l . Ls_2 4 C(p) Ls_4

e data are well described by theoretical expectation
(but had to go to lattices of size 40% )

e allows infinite volume extrapolation

e use difference of only 1/L? and combined 1/L? + 1/L* fits as systematic errors
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Effect of top-bottom mass splitting

e most simulations are for y;/y, = 1

< less time consuming simulations

e see effects of mass-splitting
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Result for lower Higgs boson mass bound

e data in infinite volume limit
e reliable description from effective potential

e most realistic: Ny = 3, yp/y: = 0.024 (circle in graph)
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Largest Higgs boson mass at \ = oc

e at a fixed cut-off A

e largest Higgs boson mass obtained at A = oo
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Upper Higgs boson mass bounds

fit data to expected theoretical dependence on cut-off A
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e infinite volume data are well described by theoretical expectation
— consistent with triviality of Higgs-Yukawa model

e compare pure ®* theory and Higgs-Yukawa:

—r See
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Lower and upper Higgs boson mass bounds

e cut-off depence of lower and upper bounds

e allowed range of Higgs boson mass:
50GeV < mpyg < 650GeV at cut-off A = 1.5TeV
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e When does experimental scalar boson mass cut the lower bound? (in progress)



Resonance parameters of Higgs boson from the lattice

Finite volume energy levels:

e measure two-particle Goldstone energy in center of mass frame

W = 2vm?2 + k2

= value of k

= infinite volume scattering phase 0¢ (Liischer)

3
72 kL
tan do(k) = 300(32)’ 9= 2n

2\ 1 1
Zoo(q®) = Zﬁezi% Jarni—q2
Generalization to moving frames (Gottlieb, Rummukainen; Feng, Renner, K.J.)

— many more finite volume enegy levels
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Coupling dependence of Higgs boson width
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Extension to a fourth fermion generation
(Hou; Holdom, Hou, Hurth, Mangano, Sultansoy, Unel)

Motivation:

e offers potential to generate sufficient amount of CP violation (Hou)

e heavy fermion mass
— large Yukawa couplings
— need of non-perturbative study

e here: effect of 4th fermion generation on Higgs boson mass bounds

e strong dynamics due to large Yukawa coupling?



Fourth generation Higgs boson mass bounds

e fixing the top quark masses

e managed to fix m; and my to a few % precision
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apply same technology to heavy fermions

comparing m; = 175GeV and my = 700GeV:

Moving to 4th generation

— signficant narrowing of allowed Higgs boson mass range

slight shift of upper bound ~ 20%
large shift of lower bound: 50GeV — 500GeV
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Fermion mass dependence of Higgs boson mass bounds
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e strong dependence on fermion mass

e questions to be addressed

— for a few data points: infinite volume limit missing
— b’ and t’ are mass degenerate



Heavy Fermion mass — system becomes non-perturbative?
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e 1-loop lattice effective potential for lower bound
— good description of simulation results



Effect of higher dimensional operators

2000
1800 -
ook A =2.0TeV
1400 -
12001~ ) =0.00 -
fow 1000 | w
MGV =y, = 0.001 "
800 | -
600 - .
- e
400? - e
200 - ™ e
E. "™
200 400 600 800 1000
m, (GeV)

— analysis from lattice perturbative effective potential
— fix myop = 175GeV, Ag = 0.001 and cut-off A = 2TeV

— change \ with constraint d*V.g/d®? > 0 for v < ® < 0.5A



Non-zero temperature electroweak phase transition
Sakharov condition: sufficiently out of thermal equilibrium
= first order phase transition with v/7T,. > 1

Situation in the standard model:
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e at physical Higgs boson masses: cross-over
(side remark QCD: at physical quark masses: cross-over)
Why are the phase transitions avoided?

e fourth generation: could be stronger first oder phase transition



Higgs-Yukawa model at Non-zero temperature

large fermion mass — strong first order phase transition
from effectice potential in Higgs-Yukawa model
(Kikukawa, Kohda, Yasuda)

Check scenario in our lattice Higgs-Yukawa model
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e check effective potential and order of phase transition



Summary

e Lattice Higgs-Yukawa model

— exact chiral symmetry
— analytical control from effective potential
— Higgs bosn treated as true resonance

e established lower and upper bounds on the Higgs boson mass:

at A =15TeV  50GeV < My < 650GeV

e extended study to 4th generation with 190GeV < my < 700GeV
— moderate (20%) shift of upper bound

— large shift of lower bound: — M2"" ~ 500GeV my = 700GeV
— no effect of higher dimensional operators

e calculations of Higgs boson resonance parameters

— width remains small O(10%) even for A = o

e consequences of a 125GeV Higgs boson mass

— 4th generation ruled out
— energy scale of breadown of standard model (in progress)



