Lattice Field Theory: solving non-perturbative problems on supercomputers

Karl Jansen

- Lattice physics program in Germany
 - Ab-initio computations in QCD
 - Matter under extreme conditions
 - Non-QCD physics
 - Conceptual developments → problem of chiral symmetry

- Algorithms and machines
- Conclusions
The John von Neumann-Institute of Computing (NIC) coorporation between DESY and research centre Jülich

• NIC shall provide supercomputer resources

centre of Lattice gauge theory Zeuthen
general computational science Jülich

• NIC shall maintain research groups
 – Elementary particle physics K.J.
 – Many particle physics P. Grassberger
Why Lattice Gauge Theory had to be invented

→ *Quantum ChromoDynamics*

<table>
<thead>
<tr>
<th>asymptotic freedom</th>
<th>confinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>distances $\ll 1\text{fm}$</td>
<td>distances $\gtrsim 1\text{fm}$</td>
</tr>
<tr>
<td>world of quarks and gluons</td>
<td>world of hadrons and glue balls</td>
</tr>
<tr>
<td>perturbative description</td>
<td>non-perturbative methods</td>
</tr>
</tbody>
</table>

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling.

Wilson, Cargese Lecture notes 1976
Lattice Gauge Theory is also important today, because

- it serves as a precise but simple definition of quantum fields, which has its own beauty;

- it brings to the fore and clarifies essential aspects such as renormalization, scaling, universality, and the role of topology;

- it makes a fruitful connection to statistical physics;

- it allows numerical simulations on a computer, giving truly non-perturbative results as well as new physical intuition into the behaviour of the system;

J. Smit, “Introduction to Quantum fields on a Lattice”, 2002
Only the lattice can do this!

- fundamental scale of QCD Λ_{QCD}
- Quark masses and Hadron masses
- Chiral condensate $\langle \bar{q}q \rangle$
- decay constants f_B, f_K
- critical temperature T_c

what can be done in the next years \rightarrow LATFOR proposal

rather critical talk about problems with present simulations
K. Jansen, Lattice2003, Tsukuba
Simulations of hypothetical worlds

- setting u-quark mass to zero \rightarrow CP-violation?
- setting number of flavours very large
- large value of Higgs mass
 (e.g. crossover scenario, width)
- testing extensions of the standard model
 (e.g. more Higgses, ghost particles, extra dimensions)
- non-perturbative fixed points \rightarrow new field theories
- simulations without certain degrees of freedom
 (e.g. eliminating monopole field)
A look at the continuum limit

the general idea of the continuum limit:

keep fixed values of physical quantities such as a particle mass $m^{\text{phys}} = m^{\text{lattice}}/a$

\Rightarrow for $a \to 0 \Rightarrow m^{\text{lattice}} \to 0$

since $m^{\text{lattice}} = 1/\xi^{\text{lattice}} \Rightarrow$ lattice correlation length diverges

$\xi^{\text{lattice}} \approx 2.5$ $\xi^{\text{lattice}} \approx 5.0$ $\xi^{\text{lattice}} \approx 10.0$
The continuum limit

fixed physical length \(L = Na = 1\text{fm} \) means

\[
\begin{align*}
 a = 0.1\text{fm} & \Rightarrow N = 10 \\
 a = 0.05\text{fm} & \Rightarrow N = 20 \\
 a = 0.01\text{fm} & \Rightarrow N = 100
\end{align*}
\]

problem scales at least with \(N^4 \) \(\Rightarrow \) easily run out of computertime and memory solutions (?)

- keep \(a \gg 0 \) \(\Rightarrow \) lattice artefacts
- keep \(L < 1\text{fm} \) \(\Rightarrow \) finite size effects

modern approach through theoretical advances

\(\rightarrow \) accelerate continuum limit: improvement programme
\(\rightarrow \) do not be afraid of finite size effects: make use of them
Big Bang

- Unified Forces
- Inflationary Expansion
- Forces Separate
- Nucleons Form
- Atoms Form
- Stars Are Born
- Today

<table>
<thead>
<tr>
<th>Time</th>
<th>10^{-43} s</th>
<th>10^{-35} s</th>
<th>10^{-16} s</th>
<th>10^{-5} s</th>
<th>300 000 Years</th>
<th>10^9 Years</th>
<th>$15 \cdot 10^9$ Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>10^{17} TeV</td>
<td>10^{15} TeV</td>
<td>1 TeV</td>
<td>150 MeV</td>
<td>1 eV</td>
<td>4 meV</td>
<td>0.7 meV</td>
</tr>
</tbody>
</table>

- Electroweak phase transition (?)
- QCD phase transition
Example: electroweak phase transition

exciting possibility: *baryon-asymmetry* of the universe is generated in an early stage of the universe at the *electroweak phase transition* at $T_c \approx 250\text{GeV}$

Condition *Sakharov; Kuzmin, Rubakov, Shaposhnikov*

- rate of baryon generation \neq rate of baryon annihilation

→ out of equilibrium phenomena

→ strong enough *first order* phase transition

\[
\frac{v_T}{T_c} > 1 \quad \text{jump of order parameter } v_T \text{ large enough}
\]

v_T *Higgs vacuum expectation value*

T_c *critical temperature*
electroweak physics ⇒ use perturbation theory

Buchmüller, Fodor, Hebecker

However: problem with perturbation theory
uncertainty in perturbation theory triggered numerical lattice simulations of the electroweak sector (SU(2)-Higgs model)

- 4-dimensional simulations at finite temperature
 Fodor, Hein, Jansen, Jaster, Montvay

- 3-dimensional effective field theory simulations
 Kajantie, Laine, Shaposhnikov, Rummukainen
The physics program of LATFOR

• Ab-initio computations in QCD
• Matter under extreme conditions
• Hadron and Nuclear physics
• Non-QCD physics
• Conceptual developments
Ab initio calculations in QCD

- Mass spectrum

A major goal (and major virtue) of lattice QCD → computation of hadron masses from first principles

← evaluate euclidean correlation functions
(for unitary theories a rotation back to Minkowski space is always possible)

Operator $O(x, t)$ quantum numbers (spin, charge, parity)
corresponding to the particle we are interested in

If we are only interested in zero momentum we can project $O(t) = \sum_x O(x, t)$

Its correlation function is then (infinite lattice)

$$\langle O(0)O(t) \rangle = \frac{1}{Z} \sum_n \langle 0 | O(0) e^{-Ht} | n \rangle \langle n | O(0) | 0 \rangle$$

$$= \frac{1}{Z} \sum_n |\langle 0 | O(0) | n \rangle|^2 e^{-(E_n - E_0)t}$$
effective masses

\[m_{\text{eff}}(t) = - \ln \frac{\Gamma(t+1)}{\Gamma(t)} \]

periodic boundary conditions \[f(t) = A \cosh(m_{\text{eff}} t) \]
a complete hadron spectrum in the quenched approximation
→ neglect dynamical fermion effects, i.e. exchange of virtual quarks in the hadron

CP-PACS collaboration
glueball spectrum \rightarrow unique prediction from lattice QCD
Ab initio calculations in QCD

- **Fundamental parameters** \rightarrow fundamental scale Λ_{QCD}
 - running strong coupling constant

Calculation finished

$\Lambda_{\text{QCD}} = 238(19)\text{MeV}$

Scale Λ not yet known
larger lattices needed \rightarrow apeNEXT
Unitarity triangle

→ parameters of the CKM matrix
→ promising place to look for new physics

Standard UT fit is now entirely in the hands of Lattice QCD (up to, perhaps, $|V_{ub}|$) M. Beneke, Lattice 2001, Berlin

A. Kronfeld, Lattice 2003, Tsukuba

→ assume lattice calculations are precise to the 2-3% level

→ what are effects of new physics in experiment?
Non-QCD physics

- **Electroweak phase transition**
 - include fermions, Higgs-duplet models, supersymmetric extensions

- **Quantum gravity and matrix models**
 - pure definition and getting ideas

- **Supersymmetry**
 - phase diagram, supersymmetry breaking mechanism
Non-QCD physics

• supersymmetry restauration?

expect: gluino mass vanishes, all other masses become degenerate

→ need dynamical simulations from the very beginning
→ profile similar as lattice QCD simulations
→ lattice breaks supersymmetry explicitly
→ conceptual developments to formulate supersymmetry on the lattice D. Kaplan

Hamburg-Münster collaboration

\[\frac{1}{K} - \frac{1}{K_c} = m_{\text{quark}} \]
shaded area \(m_{\text{quark}} \approx 0 \)
There are dangerous lattice animals

→ discretization errors
→ finite volume effects
→ chiral limit
Acceleration to the continuum limit

(old) standard lattice action of QCD is

\[S_{\text{old}} = S_G + S_{\text{wilson}} \]

\[S_G = \mathcal{O}(a^2) \]

\[S_{\text{wilson}} = \mathcal{O}(a) \]

⇒ expectation values of physical observables

\[\langle O \rangle = \langle O \rangle_{\text{cont}} + \mathcal{O}(a) \]

employing all lattice symmetries, equations of motions

⇒ only one more term in \(\mathcal{O}(a) \) possible → improved lattice action

\[S_{\text{new}} = S_{\text{old}} + S_{sw} \]

\[S_{sw} = a^5 \sum_x c_{sw} \bar{\psi}(x) \frac{i}{4} \hat{F}_{\mu\nu}(x) \Psi(x) \]

with \(c_{sw} \) a tunable parameter

⇒ compute non-perturbatively \(c_{sw} \) such that \(\mathcal{O}(a) \) cancel
\(|\langle O \rangle = \langle O \rangle_{\text{cont}} + O(a^2)\|

de illustrates a successful *Symanzik improvement programme* of the

Example of physical quantity derived from the action

\(\Rightarrow\) no operator improvement necessary
Quantum chromodynamics

massless QCD has chiral symmetry

$$\psi \rightarrow e^{i\theta\gamma_5}\psi, \quad \bar{\psi} \rightarrow \bar{\psi}e^{i\theta\gamma_5}$$

or, equivalently, $\gamma_5 D_{\text{cont}} + D_{\text{cont}}\gamma_5 = 0$, D_{cont} Dirac operator

assuming that chiral symmetry is spontaneously broken and

$$\langle \bar{\psi}\psi \rangle \neq 0$$

a number of consequences follow, e.g.

- Goldstone modes = pions (having very small mass)

- low energy relations (PCAC) relying on symmetry arguments alone

description possible by chiral perturbation theory for low energy phenomena in QCD
Chiral symmetry on the lattice

one of our main problems with the lattice is the question of *chiral symmetry*

the problem is *how to have right massless spectrum on the lattice and preserve continuum chiral symmetry*

⇔ impossible due to *Nielsen-Ninomiya theorem* (Nielsen and Ninomiya) (while keeping also locality)

for Wilson fermions → demonstration in perturbation theory (although in all orders) that *in the continuum limit* chiral symmetry is restored (Bochicchio, Maiani, Rossi, Testa)

non-perturbatively: ... to be proven
let us go to outer space in extra dimensions (following D. Kaplan)

also, let us start with *continuum field theory*

we consider a 5-dimensional theory (*free fermions for the moment*) with a *mass defect* in one extra dimension s

\[
D_5 = \partial_\mu \gamma_\mu + m_0 + \gamma_5 \partial_s + m(s)
\]

\[
m(s) = \begin{cases}
-m; & s \to -\infty \\
+m; & s \to +\infty
\end{cases}
\]
let us try to solve the **massless** Dirac equation

\[D_5(m_0 = 0)\psi = 0 \]

this can be solved by the ansatz

\[
\psi_\pm = e^{ipx}\Phi_\pm(s)u_\pm \\
\Phi_\pm(s) = \exp\left\{\pm \int_0^s m(s')ds'\right\} \\
\gamma_5 u_\pm = \pm u_\pm
\]

only \(\Phi_- \) **normalizable** \(\Rightarrow \) only one solution

- massless fermion travelling along the domain wall
- it has a definite chirality
- bound to the domain wall with exponential fall-off with a rate \(|m|\) when going to \(|s| \gg 1\)
on a (still infinite) lattice \(\rightarrow \)

\[m(s) = \begin{cases}
 -m; & s \leq a \\
 0; & s = 0 \\
 +m; & s \geq a
\end{cases} \]

imposing a similar ansatz as in the continuum

we find a normalizable solution

but, there is now a second normalizable solution

\[\rightarrow \text{ doubler in the extra dimension} \]
solution \Rightarrow add Wilson term also in extra dimension

$$D_5 = \partial_\mu \gamma_\mu + m_0 + \gamma_5 \partial_s + m(s) - \nabla_\mu^* \nabla_\mu - \nabla_s^* \nabla_s$$

this kills all the doublers and we are left with a single chiral fermion on the lattice

on a finite lattice the extra dimension has an extent N_s

and we have to impose some boundary conditions

\Rightarrow induce a second domain wall

\Rightarrow two solutions living on their own domain wall with opposite chirality
we can also choose open boundary conditions in the extra dimension (Furmann, Shamir)
⇒ chiral zero modes appear as surface modes
(reminiscent of Shockley modes in solid state physics)

numerically solving the Dirac equation

(a) periodic boundary conditions
(b) open boundary conditions (≈ Schrödinger functional)
gauging the 5-dimensional Dirac operator: gauge only the 4-dimensional part

\[D_5 = D_W - m_0 + \gamma_5 \partial_s + m(s) - \nabla_s^* \nabla_s \equiv D_\mu \gamma_\mu D_\mu^* D_\mu - m_0 + \gamma_5 \partial_s + m(s) - \nabla_s^* \nabla_s \]

\[\Rightarrow \text{ our 5-dimensional lattice action becomes} \]

\[S_{DW} = \sum_{x,y,s,s'} \bar{\psi} (D_{x,y} \delta_{s,s'} + D_{s,s'} \delta_{x,y}) \Psi \]

\[D_{x,y} = \frac{1}{2} \sum_\mu (1 + \gamma_\mu) U(x,\mu) \delta_{x+\mu,y} + (1 - \gamma_\mu) U^{\dagger}(y,\mu) \delta_{x-\mu,y} + (m_0 - 4) \delta_{x,y} \]

\[D_{s,s'} = \left\{ \begin{array}{ll}
P_+ \delta_{2,s'} - m P_- \delta_{N_s,s'} - \delta_{1,s'}, & s = 1 \\
P_+ \delta_{s+1,s'} + P_- \delta_{s-1,s'} - \delta_{s,s'}, & 2 \leq s \leq N_s - 1 \\
P_- \delta_{N_s-1,s'} - m P_+ \delta_{1,s'} - \delta_{N_s,s'}, & s = N_s
\end{array} \right. \]

projectors \(P_\pm = (1 \pm \gamma_5)/2 \)

- \(m \) is the domain wall mass \(\rightarrow \) determines the rate of exponential decay in the extra dimension

- \(m_0 \) is the quark mass \(\rightarrow \) has to be tuned to zero to give exactly chiral fermions
if we define \((\text{Neuberger, Kikukawa, Noguchi})\)

\[
K_\pm \equiv \frac{1}{2} \pm \frac{1}{2} \gamma_5 \frac{a_s \mathcal{M}}{\sqrt{2 + a_s \mathcal{M}}} \quad \mathcal{M} = D_W - m_0
\]

then the domain wall operator can be written as an effective 4-dimensional operator

\[
aD_{N_s} = 1 + \gamma_5 \frac{K^N_{N_s} - K^N_{-N_s}}{K^N_{N_s} + K^N_{-N_s}}
\]

infinite \(N_s\) limit \(\Rightarrow\) 4-dimensional operator

\[
aD \equiv \lim_{N_s \to \infty} aD_{N_s} = 1 + \gamma_5 \text{sign} (K_+ - K_-)
\]

which is written as

\[
aD = 1 - \frac{A}{\sqrt{A^\dagger A}} \quad , \quad A = -\frac{a_s \mathcal{M}}{2 + a_s \mathcal{M}}
\]

anti-commutation relation for \(D\)

\[
\gamma_5 D + D \gamma_5 = 2aD \gamma_5 D
\]
Ginsparg-Wilson relation

\[\gamma_5 D + D\gamma_5 = 2a D\gamma_5 D \]

\[\Rightarrow D^{-1}\gamma_5 + \gamma_5 D^{-1} = 2a \gamma_5 \]

\(D^{-1}\) anti-commutes with \(\gamma_5\) at all non-zero distances

\(\rightarrow\) only mild (i.e. local) violation of chiral symmetry

Ginsparg and Wilson arrived at this expression already in the early days of lattice gauge theories from a completely different path \(\leftarrow\) block spinning from the continuum

alternative solution of GW relation: overlap operator \(D_{ov}\) (Neuberger)

\[D_{ov} = [1 - A(A^\dagger A)^{-1/2}] \]

with \(A = 1 + s - D_w\) \(s\) a tunable parameter, \(0 < s < 1\)
Moreover: **Ginsparg-Wilson relation** implies an **exact lattice chiral symmetry** (Lüscher):

for any operator D which satisfies the Ginsparg-Wilson relation, the action

$$S = \bar{\psi} D \psi$$

is invariant under the transformations

$$\begin{align*}
\delta \psi &= \gamma_5 (1 - \frac{1}{2} a D) \psi \\
\delta \bar{\psi} &= \bar{\psi} (1 - \frac{1}{2} a D) \gamma_5
\end{align*}$$

\Rightarrow have a notion of chiral symmetry on the lattice

$$\gamma_5 \rightarrow \gamma_5 (1 - \frac{1}{2} a D)$$

the *lattice* operator D enjoys many properties of the *continuum* operator:

$Z_A = Z_V = 1$, anomaly, index theorem, …
in addition:

despite the term $1/\sqrt{A^\dagger A}$
(\Rightarrow all lattice points are coupled among each other)

the operator D_{ov} is local, $||D_{ov}\Phi|| \propto e^{-\gamma/a}$
(Hernandèz, Lüscher, K.J.)

- if plaquette is bounded: $||1 - U_P|| < 1/30$
 (analytical proof)
- locality also demonstrated numerically when bound not satisfied

\Rightarrow

- *chiral symmetric*
- *local*

lattice QCD \rightarrow non-perturbative definition of QCD ($a \rightarrow 0$)
practical application:
spontaneous chiral symmetry breaking in QCD

one of the major assumptions in QCD is that chiral symmetry is spontaneously broken by the formation of a scalar condensate \(\langle \bar{\psi} \psi \rangle \)

spontaneous breaking of chiral symmetry

⇒ appearance of Goldstone particles (pions) (Goldstone theorem)

⇒ many low energy relation (PCAC relation) in QCD

⇒ application of chiral perturbation theory

the lattice is a unique environment to test this basic assumption and an operator satisfying the Ginsparg-Wilson relation provides the necessary tool to perform this test in practise
simulations with overlap fermions \gg more expensive than standard fermions \Rightarrow use quenched approximation

results for scalar condensate $\Sigma(m, V)$ as function of quark mass m and volume V in quenched chiral perturbation theory has been worked out (Damgaard, Osborn, Toublan, Verbaaschoot)

$$\Sigma(m, V) = \Sigma z [I_\nu(z)K_\nu(z) + I_{\nu+1}(z)K_{\nu-1}(z)] + \Sigma_{\frac{\nu}{z}}$$

$z = m\Sigma V$, ν denotes the topological charge sector
Σ infinite volume, chiral limit scalar condensate

for $m \to 0$ approximate formulae are obtained

$$\Sigma_{\nu=0}(a) = m \Sigma^2 V \left(1/2 - \gamma + \ln 2 - \ln m\Sigma V + O(m\Sigma V)^2\right)$$

$$\Sigma_{\nu=\pm 1}(a) = \frac{1}{mV} + \frac{1}{2}m\Sigma^2 V \left(1 + O(m\Sigma V)^2\right)$$

at finite lattice spacing a there is a quadratic divergence $\propto 1/a^2$

this divergence has to be subtracted (i.e. fitted)
Computation of chiral condensate using overlap fermions

data points at 7 masses on 3 volumes
attempt a fit according to

$$\Sigma_{\nu=\pm 1} = \Sigma \sum z \left[I_{\nu}(z)K_{\nu}(z) + I_{\nu+1}(z)K_{\nu-1}(z) \right] + C/a^2$$

→ only two free parameters
\(\Sigma \) and \(C \)

(Hernández, Lellouch, K.J.)

⇒ find strong evidence for spontaneous chiral symmetry breaking in QCD!
Algorithm and machine development
(not incorporating conceptual improvements)
Japan

Computational Physics on Parallel Array Computer System → CPPACS
collaboration of lattice physicists from Tsukuba
+ industrial partner Hitachi

![Image of supercomputer](image)

614 Gflops peak speed
128 Gbytes memory
2048 Processing units

future development → ? ← **Earth simulator**
USA

QCD on digital Signal Processor System → QCDSP

600 Gflops peak speed
50 Gbytes memory
12,288 Processing units

Future development → **QCDOC (QCD On Chip)**

Collaboration of lattice physicists from Columbia University, RIKEN, BNL and UKQCD + industrial partner IBM

10 Tflops peak speed
40 Gbytes on chip + $O(1)$ Tbytes external memory

$O(10,000)$ Processing units
1 Dollar/Mflops sustained performance
Europe

Array Processor Experiment → APE

APEmille installation in Zeuthen
550 Gflops peak speed
32 Gbytes memory
1024 Processing units

future development → apeNEXT

collaboration of lattice physicists from INFN, DESY and University of Paris Sud

10 Tflops peak speed
1-4 Tbytes memory
O(6 000) Processing units
1Euro /Mflops sustained performance
LATFOR evaluationgroup

- definition and implementation of lattice QCD benchmark suite
- test of benchmarks on different platforms
 - apeNEXT (simulator)
 - QCDOC (simulator)
 - several PC-cluster systems (MPI)
 - commercial supercomputers
 - CRAY T3E-900, Hitachi SR8000-F1, IBM p690-Turbo
- consumer’s report
 - Price/performance ratio
 - aim: 1 Euro/Mflop
 - memory, I/O
 - userfriendliness
 - electricity, footprint, cooling
 - existing Know-How
Evaluation
M. Hasenbusch, K. Jansen, T. Lippert, D. Pleiter, H. Stüben,
P. Wegner, T. Wettig and H. Wittig

single node performance

<table>
<thead>
<tr>
<th></th>
<th>apeNEXT</th>
<th>QCDOC</th>
<th>PC-Cluster</th>
<th>IBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>1600</td>
<td>1000</td>
<td>3400</td>
<td>5200</td>
</tr>
<tr>
<td>M</td>
<td>944</td>
<td>470</td>
<td>849</td>
<td>–</td>
</tr>
<tr>
<td>M_{eo}</td>
<td>944</td>
<td>465</td>
<td>930</td>
<td>600 – 900</td>
</tr>
<tr>
<td>M_{ssor}</td>
<td>368</td>
<td>–</td>
<td>545</td>
<td>–</td>
</tr>
<tr>
<td>(ψ, ϕ)</td>
<td>656</td>
<td>450</td>
<td>530</td>
<td>272 – 306</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>\psi</td>
<td></td>
<td>^2$</td>
</tr>
<tr>
<td>zaxpy</td>
<td>464</td>
<td>450</td>
<td>358</td>
<td>210 – 301</td>
</tr>
<tr>
<td>daxpy</td>
<td>–</td>
<td>190</td>
<td>183</td>
<td>139 – 197</td>
</tr>
<tr>
<td>$U^*\phi$</td>
<td>1264</td>
<td>780</td>
<td>307</td>
<td>240 – 247</td>
</tr>
<tr>
<td>U^*V</td>
<td>1040</td>
<td>800</td>
<td>763</td>
<td>347 – 442</td>
</tr>
<tr>
<td>Clover</td>
<td>1136</td>
<td>790</td>
<td>800</td>
<td>527</td>
</tr>
</tbody>
</table>
Top 12 list for lattice QCD benchmark (Wilson-Dirac operator)
if a 25 Teraflops system would be installed end 2003/beginning 2004

<table>
<thead>
<tr>
<th>Rank</th>
<th>Platform</th>
<th>Sustained</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>apeNEXT</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>QCDOC</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Earth simulator (Japan)</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>ASCI Q - AlphaServer SC ES45 (Hewlett-Packard, LANL, USA)</td>
<td>7.4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CR Linux Cluster (Linux Networx, LLNL, USA)</td>
<td>2.7</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>AlphaServer SC ES45 (Hewlett-Packard, Pittsburg)</td>
<td>2.7</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>ASCI White (IBM, LLNL, USA)</td>
<td>2.5</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>xSeries Cluster (IBM, LLNL, USA)</td>
<td>2.3</td>
<td>9.2</td>
</tr>
<tr>
<td>8</td>
<td>AlphaServer SC ES45 (Hewlett-Packard, CEA, France)</td>
<td>2.3</td>
<td>5.1</td>
</tr>
<tr>
<td>10</td>
<td>SP Power3 (IBM, NERSC, USA)</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>PRIMEPOWER HPC2500 (Fujitsu, Japan)</td>
<td>1.4</td>
<td>12.0</td>
</tr>
<tr>
<td>12</td>
<td>AlphaServer SC ES45 (Hewlett-Packard, NASA)</td>
<td>1.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>

M. Hasenbusch

– take single node performance → upper bound
– where no direct benchmark possible, take scaling of standard benchmark
– cost of other machines an order of magnitude larger than apeNEXT/QCDOC
modern lattice computations
→ do not only want to have bigger computers
→ work hard on algorithmic improvements
→ incorporate theoretical progress:
 • get rid of effects of finite physical boxlength L
 ⇐ they use the finite extend of the box *Finite Size Scaling technique*
 • continuum limit $a \to 0$
 ← only acceleration of approach to the continuum limit
 • have developed *exact chiral symmetry on the lattice*:
 important theoretical (numerical?) concept

on the machine side:
• race between *apeNEXT* and *QCDOC*
• exciting question: *role of PC-clusters*

transition period to realistic simulations with dynamical fermions ⇒ facing the truth