Lattice QCD with two light Wilson twisted mass quarks
A status report

Urs Wenger (ETH Zürich)

with the
European Twisted Mass Collaboration (ETMC)

Bern, 30 March 2007
Quantum chromodynamics (QCD) – the theory of strong interactions

\[\mathcal{L}_{\text{QCD}} = \bar{\psi}(i\slashed{D} - m_{q})\psi - \frac{1}{4} G_{\mu \nu} G^{\mu \nu} \]

- a simple and beautiful field theory,
- parameters are the quark masses \(m_{q} \) and the dimensionless gauge coupling,
- in the chiral limit a scale is generated through *dimensional transmutation*,
- all dimensionful quantities can be expressed in units of *one characteristic scale*, e.g. the proton mass,
exhibits a variety of non-perturbative phenomena like
- colour confinement,
- spontaneous breaking of chiral symmetry,
- its restoration at high temperature or density.

A qualitative and quantitative understanding of these phenomena provides
- confirmation of the theoretical framework,
- necessary input for SM phenomenology,
- valuable contributions to the discovery of new physics beyond the SM.

⇒ Lattice QCD is a (the) non-perturbative method for such ab-initio calculations
Quantum chromodynamics is formally described by the Lagrange density:

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} (i D - m_q) \psi - \frac{1}{4} G_{\mu \nu} G^{\mu \nu}$$

Lattice regularization: discretize Euclidean space-time

- hypercubic $L^3 \times T$-lattice with lattice spacing a
- derivatives \Rightarrow finite differences
- integrals \Rightarrow sums
- gauge potentials A_μ in $G_{\mu \nu} \Rightarrow$ link matrices U_μ ('\[\text{•} \rightarrow \text{•}\]')
Wilson Dirac Operator

\[
D_W[U] + m_0 = \frac{1}{2} \sum_\mu \left[\gamma_\mu (\nabla_\mu + \nabla_\mu^*) \right] + m_0
\]
Wilson Formulation

Wilson Dirac Operator

\[D_W[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[\gamma_\mu (\nabla_\mu + \nabla^{\ast}_\mu) \right] + m_0 \]

with the covariant difference operators:

\[\nabla_\mu \psi(x) = \frac{1}{a} \left[U(x, \mu) \psi(x + a\hat{\mu}) - \psi(x) \right] \]

\[\nabla^{\ast}_\mu \psi(x) = \frac{1}{a} \left[\psi(x) - U(x, -\mu) \psi(x - a\hat{\mu}) \right] \]
Wilson Formulation

Wilson Dirac Operator

\[D_W[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla^{*}_{\mu}) \right] + m_0 \]

with the covariant difference operators:

\[\nabla_{\mu} \psi(x) = \frac{1}{a} \left[U(x, \mu) \psi(x + a\hat{\mu}) - \psi(x) \right] \]

\[\nabla^{*}_{\mu} \psi(x) = \frac{1}{a} \left[\psi(x) - U(x, -\mu) \psi(x - a\hat{\mu}) \right] \]

suffers from a fermion doubling problem.
Wilson Dirac Operator

\[
D_W[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[\gamma_\mu (\nabla_\mu + \nabla^*_\mu) - a \nabla^*_\mu \nabla_\mu \right] + m_0
\]

- Wilson Term \(-a \nabla^*_\mu \nabla_\mu\)
Wilson Formulation

Wilson Dirac Operator

\[D_W[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[\gamma_\mu \left(\nabla_\mu + \nabla_\mu^* \right) - a \nabla_\mu^* \nabla_\mu \right] + m_0 \]

- Wilson Term \(- a \nabla_\mu^* \nabla_\mu\)
 - solves the fermion doubling problem,
Wilson Dirac Operator

\[D_W[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla^{*}_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 \]

- Wilson Term \(-a \nabla^*_{\mu} \nabla_{\mu}\)
 - solves the fermion doubling problem,
- but:
 - chiral symmetry is explicitly broken, \(\{D_W, \gamma_5\} \neq 0\),
 - therefore \(m_0\) renormalises additively (and multiplicatively)
 \[m_q = m_0 - m_{\text{crit}} \]
- leading lattice artifacts are \(O(a)\),
Wilson Formulation

Wilson Dirac Operator

\[D_W[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 \]

- Wilson Term \(-a \nabla^*_{\mu} \nabla_{\mu}\)
 - solves the fermion doubling problem,
- but:
 - chiral symmetry is explicitly broken, \(\{D_W, \gamma_5\} \neq 0\),
 - therefore \(m_0\) renormalises additively (and multiplicatively)
 \[m_q = m_0 - m_{\text{crit}} \],
 - leading lattice artifacts are \(\mathcal{O}(a)\),
 - unphysically small eigenvalues of \(D_W[U] + m_0\).
Partition function \(Z_{\text{QCD}} = \int (\mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi) \ e^{-S_{\text{QCD}}[U; \bar{\psi}, \psi]} \)

- Mathematically well defined in Euclidean space-time on a finite volume.
- Non-perturbative, gauge invariant regularisation: \(\Rightarrow \) non-perturbative (low energy) physics
- Continuum limit \(\Rightarrow a \to 0 \):
 - Poincaré symmetries are restored automatically,
 - Universality guarantees irrelevance of discretisation details.

The expectation value of an operator \(\mathcal{O} \) is defined non-perturbatively by the functional integral

\[
\langle \mathcal{O} \rangle \equiv \frac{1}{Z_{\text{QCD}}} \int (\mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi) \ e^{-S_{\text{QCD}}[U; \bar{\psi}, \psi]} \mathcal{O}[\bar{\psi}, \psi; U],
\]
The finite number of finite integrals can be evaluated on a computer.

Integrate out the fermion fields to obtain the fermion determinant $\int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-\bar{\psi}D\psi} \propto \text{det}(D)$:

$$Z = \int (\mathcal{D}U) \text{det} D(U) e^{-S_G[U]}$$

Any operator \mathcal{O} can be expressed in terms of the bosonic fields

$$\mathcal{O}'(U) = \mathcal{O} \left(\frac{\delta}{\delta \psi}, \frac{\delta}{\delta \bar{\psi}}; U \right) e^{-\bar{\psi}D\psi} \Bigg|_{\psi=\bar{\psi}=0}$$

e.g. the fermion propagator is $\langle \psi(x) \bar{\psi}(y) \rangle = D^{-1}(x, y)$.
Systematic errors

- For given parameters lattice calculations are exact (up to statistical errors). . .
Systematic errors

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
Systematic errors

- For given parameters lattice calculations are exact (up to statistical errors) . . .
- . . . but we need to control the systematic artefacts:
 - lattice spacing effects \Rightarrow continuum limit, lattice spacing $a \to 0$,
Systematic errors

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
 - lattice spacing effects \Rightarrow continuum limit, lattice spacing $a \to 0$,
 - finite size effects \Rightarrow thermodynamic limit, physical volume $L^3 \to \infty$,
Systematic errors

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
 - lattice spacing effects \Rightarrow continuum limit, lattice spacing $a \to 0$,
 - finite size effects \Rightarrow thermodynamic limit, physical volume $L^3 \to \infty$,
 - chiral effects \Rightarrow chiral limit, $m_{PS} \to m_\pi$.

Urs Wenger
Lattice QCD with light quarks
For given parameters lattice calculations are exact (up to statistical errors). . .

. . . but we need to control the systematic artefacts:

- lattice spacing effects \Rightarrow continuum limit, lattice spacing $a \to 0$,
- finite size effects \Rightarrow thermodynamic limit, physical volume $L^3 \to \infty$,
- chiral effects \Rightarrow chiral limit, $m_{PS} \to m_\pi$,

\Rightarrow subtle interplay of limits
Systematic errors

For given parameters lattice calculations are exact (up to statistical errors) . . .

. . . but we need to control the systematic artefacts:

- lattice spacing effects \Rightarrow continuum limit, lattice spacing $a \to 0$,
- finite size effects \Rightarrow thermodynamic limit, physical volume $L^3 \to \infty$,
- chiral effects \Rightarrow chiral limit, $m_{PS} \to m_{\pi}$,

\Rightarrow subtle interplay of limits

We need

$$a \ < \ 0.1 \text{ fm},$$

$$L \ > \ 2 \text{ fm},$$

$$m_{PS} \ < \ 300 \text{ MeV}.$$
Why is it so expensive?

- We need to compute

\[Z_{\text{QCD}} \propto \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \ e^{-\bar{\psi}(D+m_q)\psi} \propto \det(D + m_q). \]
Why is it so expensive?

- We need to compute

\[Z_{\text{QCD}} \propto \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \ e^{-\bar{\psi}(D+m_q)\psi} \propto \det(D + m_q). \]

- The determinant can be represented by bosonic fields,

\[\det(D + m_q) \propto \int \mathcal{D}\phi^\dagger \mathcal{D}\phi \ e^{-\phi^\dagger(D+m_q)^{-1}\phi}. \]
Why is it so expensive?

- We need to compute

\[Z_{\text{QCD}} \propto \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \ e^{-\bar{\psi}(D+m_q)\psi} \propto \det(D + m_q). \]

- The determinant can be represented by bosonic fields,

\[\det(D + m_q) \propto \int \mathcal{D}\phi^\dagger \mathcal{D}\phi \ e^{-\phi^\dagger(D+m_q)^{-1}\phi}, \]

but calculating

\[\varphi = (D + m_q)^{-1}\phi \]

becomes very expensive for small quark mass and large lattice extent \(L/a \).
Cost of a simulation $\propto L^5 (m_{PS})^{-6} a^{-7}$: [Ukawa '01]
Cost of a simulation $\propto L^5 (m_{PS})^{-6} a^{-7}$: [Ukawa '01]

- Continuum extrapolation: \Rightarrow Remove leading lattice artefacts by implementing $O(a)$ improvement
Cost of a simulation $\propto L^5(m_{PS})^{-6}a^{-7}$: [Ukawa '01]

continuum extrapolation:
\Rightarrow Remove leading lattice artefacts by implementing $O(a)$ improvement

chiral extrapolation to m_π:
\Rightarrow Use chiral perturbation theory, $m_{PS} \lesssim 300\text{MeV}$ necessary!
Cost of a simulation $\propto L^5 (m_{PS})^{-6} a^{-7}$: [Ukawa '01]

- Continuum extrapolation:
 \Rightarrow Remove leading lattice artefacts by implementing $O(a)$ improvement

- Chiral extrapolation to m_π:
 \Rightarrow Use chiral perturbation theory, $m_{PS} \lesssim 300\text{MeV}$ necessary!

\Rightarrow Use bigger computers . . .
Cost of a simulation $\propto L^5(m_{PS})^{-6}a^{-7}$: [Ukawa '01]

- continuum extrapolation:
 - Remove leading lattice artefacts by implementing $O(a)$ improvement

- chiral extrapolation to m_π:
 - Use chiral perturbation theory, $m_{PS} \lesssim 300$MeV necessary!

 ⇒ Use bigger computers and better algorithms!
The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].
The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].

Introduce traceless Hermitian momenta $P_{x,\mu}$ conjugate to the fields $U_{x,\mu}$, and the Hamiltonian

$$\mathcal{H} = \frac{1}{2} \sum_{x,\mu} P^2_{x,\mu} + S_g[U] + S_{pf}[U; \phi^\dagger, \phi].$$
The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].

Introduce traceless Hermitian momenta $P_{x,\mu}$ conjugate to the fields $U_{x,\mu}$, and the Hamiltonian

$$
\mathcal{H} = \frac{1}{2} \sum_{x,\mu} P_{x,\mu}^2 + S_g[U] + S_{pf}[U; \phi^\dagger, \phi].
$$

Molecular dynamics evolution of P and U by numerical integration of the corresponding equations of motion:
- large forces cause small step size.
The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].

Introduce traceless Hermitian momenta $P_{x,\mu}$ conjugate to the fields $U_{x,\mu}$, and the Hamiltonian

$$\mathcal{H} = \frac{1}{2} \sum_{x,\mu} P_{x,\mu}^2 + S_g[U] + S_{pf}[U; \phi^\dagger, \phi].$$

Molecular dynamics evolution of P and U by numerical integration of the corresponding equations of motion:
- large forces cause small step size.
- Metropolis accept/reject step to correct for discretisation errors of the numerical integration.
The pseudo-fermion part \(Q = \gamma_5 D, \ N_f = 2 \):

\[
\det(Q^2) = \int \mathcal{D}\phi \mathcal{D}\phi^\dagger \ e^{-\phi^\dagger \frac{1}{\alpha^2} \phi} = \int \mathcal{D}\phi \mathcal{D}\phi^\dagger \ e^{-S_{pf}}
\]

can be preconditioned by

\[
\det(Q^2) = \det(A_1) \cdot \det(A_2) \cdot \ldots \cdot \det(A_n)
\]

using \(n \) pseudo-fermions.
The pseudo-fermion part \((Q = \gamma_5 D, N_f = 2) \):

\[
\det(Q^2) = \int \mathcal{D}\phi \mathcal{D}\phi^\dagger \ e^{-\phi^\dagger \frac{1}{\alpha^2} \phi} = \int \mathcal{D}\phi \mathcal{D}\phi^\dagger \ e^{-S_{pf}}
\]

can be preconditioned by

\[
\det(Q^2) = \det(A_1) \cdot \det(A_2) \cdot \ldots \cdot \det(A_n)
\]

using \(n \) pseudo-fermions.

Possible choices:
The pseudo-fermion part \((Q = \gamma_5 D, \ N_f = 2) \):

\[
\det(Q^2) = \int \mathcal{D}\phi \mathcal{D}\phi^\dagger \ e^{-\phi^\dagger \frac{1}{\alpha^2} \phi} = \int \mathcal{D}\phi \mathcal{D}\phi^\dagger \ e^{-S_{pf}}
\]

can be preconditioned by

\[
\det(Q^2) = \det(A_1) \cdot \det(A_2) \cdot \ldots \cdot \det(A_n)
\]

using \(n \) pseudo-fermions.

Possible choices:
- mass preconditioning (Hasenbusch trick) \[\text{[Hasenbusch '01]}\]
Preconditioning

- The pseudo-fermion part \((Q = \gamma_5 D, N_f = 2)\):

\[
\det(Q^2) = \int D\phi \, D\phi^\dagger \, e^{-\phi^\dagger \frac{1}{\alpha^2} \phi} = \int D\phi \, D\phi^\dagger \, e^{-S_{pf}}
\]

can be preconditioned by

\[
\det(Q^2) = \det(A_1) \cdot \det(A_2) \cdot \ldots \cdot \det(A_n)
\]

using \(n\) pseudo-fermions.

- Possible choices:
 - mass preconditioning (Hasenbusch trick) [Hasenbusch '01]
 - polynomial filtering [Peardon & Sexton '02]
The pseudo-fermion part ($Q = \gamma_5 D, N_f = 2$):

$$\det(Q^2) = \int D\phi \, D\phi^\dagger \, e^{-\phi^\dagger \frac{1}{\alpha^2} \phi} = \int D\phi \, D\phi^\dagger \, e^{-S_{pf}}$$

can be preconditioned by

$$\det(Q^2) = \det(A_1) \cdot \det(A_2) \cdot \ldots \cdot \det(A_n)$$

using n pseudo-fermions.

Possible choices:
- mass preconditioning (Hasenbusch trick) [Hasenbusch '01]
- polynomial filtering [Peardon & Sexton '02]
- domain decomposition [Lüscher '03]
The pseudo-fermion part \((Q = \gamma_5 D, N_f = 2)\):

\[
\det(Q^2) = \int \mathcal{D}\phi \, \mathcal{D}\phi^\dagger \, e^{-\phi^\dagger \frac{1}{\alpha^2} \phi} = \int \mathcal{D}\phi \, \mathcal{D}\phi^\dagger \, e^{-S_{pf}}
\]

can be preconditioned by

\[
\det(Q^2) = \det(A_1) \cdot \det(A_2) \cdot \ldots \cdot \det(A_n)
\]

using \(n\) pseudo-fermions.

Possible choices:

- mass preconditioning (Hasenbusch trick) [Hasenbusch '01]
- polynomial filtering [Peardon & Sexton '02]
- domain decomposition [Lüscher '03]
- \(n\)-th root trick [Clark & Kennedy '04]
Mass pre-conditioning uses the following splitting:

\[
\det(Q^2) = \det\left(\frac{Q^2}{Q^2 + \sigma^2}\right) \cdot \det(Q^2 + \sigma^2)
\]

Original idea: Choose \(\sigma \) such that the condition numbers of \(Q^2 + \sigma^2 \) and \(Q^2/(Q^2 + \sigma^2) \) are equal [Hasenbusch & Jansen 02; ALPHA 03].
Mass precondioning (Hasenbusch Trick)

Mass precondioning uses the following splitting:

$$\det(Q^2) = \det\left(\frac{Q^2}{Q^2 + \sigma^2}\right) \cdot \det(Q^2 + \sigma^2)$$

- Original idea: Choose σ such that the condition numbers of $Q^2 + \sigma^2$ and $Q^2 / (Q^2 + \sigma^2)$ are equal [Hasenbusch & Jansen ’02; ALPHA ’03].

$$\Rightarrow \text{condition number: } K \rightarrow \sqrt{K}$$
Mass preconditioning uses the following splitting:

$$\det(Q^2) = \det \left(\frac{Q^2}{Q^2 + \sigma^2} \right) \cdot \det(Q^2 + \sigma^2)$$

- Original idea: Choose σ such that the condition numbers of $Q^2 + \sigma^2$ and $Q^2/(Q^2 + \sigma^2)$ are equal [Hasenbusch & Jansen ‘02; ALPHA ‘03]:

$$\Rightarrow \text{condition number: } K \rightarrow \sqrt{K}$$

- Pseudo-fermion forces are reduced
 $$\Rightarrow \text{larger HMC step sizes possible.}$$
Mass preconditioning (Hasenbusch Trick)

Mass preconditioning uses the following splitting:

\[
\det(Q^2) = \det\left(\frac{Q^2}{Q^2 + \sigma^2}\right) \cdot \det(Q^2 + \sigma^2)
\]

- Original idea: Choose \(\sigma\) such that the condition numbers of \(Q^2 + \sigma^2\) and \(Q^2 / (Q^2 + \sigma^2)\) are equal [Hasenbusch & Jansen '02; ALPHA '03]:
 \[\Rightarrow \text{condition number: } K \rightarrow \sqrt{K}\]

- Pseudo-fermion forces are reduced
 \[\Rightarrow \text{larger HMC step sizes possible.}\]

- Caveat: \(Q^2\) must still be inverted.
Use mass preconditioning with multiple time scales \cite{Urbach, Jansen, Shindler, U.W. '04}:

\[S_{\text{eff}} = S_G + S_1 + S_2 + \ldots + S_n \]
Use mass preconditioning with multiple time scales \cite{Urbach, Jansen, Shindler, U.W. '04}:

\[S_{\text{eff}} = S_G + S_1 + S_2 + \ldots + S_n \]

- Use different timescales $\Delta \tau_i$ for different parts in the action S_i

\[\langle \| F(x, \mu) \| \rangle \]

\begin{center}
\begin{tabular}{c c c c}
F_G & F_1 & F_2 & F_3
\end{tabular}
\end{center}
Use mass preconditioning with multiple time scales [Urbach, Jansen, Shindler, U.W. '04]:

$$S_{\text{eff}} = S_G + S_1 + S_2 + \ldots + S_n$$

- Use different timescales $\Delta \tau_i$ for different parts in the action S_i [Sexton & Weingarten '92]

$$\| \Delta \tau_i F_i \| \approx \text{const}$$
Use mass preconditioning with multiple time scales \cite{Urbach, Jansen, Shindler, U.W. '04}:

\[S_{\text{eff}} = S_G + S_1 + S_2 + \ldots + S_n \]

- Use different timescales \(\Delta \tau_i \) for different parts in the action \(S_i \) \cite{Sexton & Weingarten '92}

- \[\| \Delta \tau_i F_i \| \approx \text{const} \]

- most expensive \(A_i \) on largest timescale.
Cost for 1000 independent configurations, $a = 0.08 \text{ fm}$

![Graph showing the cost in Tflops · years for different values of m_{PS}/m_V. The graph compares the results of Urbach et al. and Ukawa.](image-url)
Cost for 1000 independent configurations, $a = 0.08$ fm

- much faster than standard HMC
Cost for 1000 independent configurations, $a = 0.08 \text{ fm}$

- much faster than standard HMC
- scales better in m_{PS}/m_{V}
Cost for 1000 independent configurations, $a = 0.08$ fm

- much faster than standard HMC
- scales better in m_{PS}/m_V
- similar developments by other groups

[QCDSF '03; Lüscher '04; Peardon et al.'05; Clark & Kennedy '05]
Consider the continuum 2-flavour fermionic action

\[S_F = \int d^4x \, \bar{\psi} \left[D + m_q + i\mu \gamma_5 \tau_3 \right] \psi \]

with
- twisted mass parameter \(\mu \),
- \(\tau_3 \) third Pauli matrix acting in flavour space.
Consider the continuum 2-flavour fermionic action

\[S_F = \int d^4x \, \bar{\psi} \left[D + m_q + i\mu \gamma_5 \tau_3 \right] \psi \]

with

- twisted mass parameter \(\mu \),
- \(\tau_3 \) third Pauli matrix acting in flavour space.

Its form is invariant under a change of variables with twist angle \(\omega \):

\[\psi \rightarrow e^{i\omega \gamma_5 \tau_3 / 2} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{i\omega \gamma_5 \tau_3 / 2}. \]
Twisted Mass Fermions II

Remarks:

- functional measure is invariant,
- transformation corresponds to a chiral rotation from 'twisted' to 'physical' basis,
 \[\Rightarrow \omega = 0 : \text{standard action}, \quad \omega = \pm \frac{\pi}{2} : \text{maximal twist}, \]
- mass terms transform as
 \[m_q \rightarrow m_q \cos \omega + \mu \sin \omega, \quad \mu \rightarrow -m_q \sin \omega + \mu \cos \omega, \]
- twisted axial and vector currents are connected to the physical ones by
 \[A^a_\mu \rightarrow A^a_\mu \cos \omega + \varepsilon^{3ab} V^b_\mu \sin \omega \quad \text{for} \quad a = 1, 2; \quad A^3_\mu \rightarrow A^3_\mu, \]
 \[V^a_\mu \rightarrow V^a_\mu \cos \omega + \varepsilon^{3ab} A^b_\mu \sin \omega \quad \text{for} \quad a = 1, 2; \quad V^3_\mu \rightarrow V^3_\mu. \]
Wilson Twisted Mass Dirac operator \cite{Frezzotti, Grassi, Sint, Weisz, '99}

\[
D_{tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla_{\mu}^*) - a \nabla_{\mu}^* \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3
\]
Wilson Twisted Mass Dirac operator \cite{Frezzotti, Grassi, Sint, Weisz, '99}

\[D_{tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3 \]

- D_{tm} is protected against unphysically small eigenvalues,
Wilson Twisted Mass Dirac operator [Frezzotti, Grassi, Sint, Weisz, '99]

\[D_{tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla^{*}_{\mu}) - a \nabla^{*}_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3 \]

- \(D_{tm} \) is protected against unphysically small eigenvalues,
- has a strictly positive measure,
Wilson Twisted Mass Dirac operator \([\text{Frezzotti, Grassi, Sint, Weisz, '99}]\)

\[
D_{tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla_{\mu}^*) - a \nabla_{\mu}^* \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3
\]

- \(D_{tm}\) is protected against unphysically small eigenvalues,
- has a strictly positive measure,
- differs from Wilson formulation only by lattice artifacts
Wilson Twisted Mass Dirac operator \[D_{tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_\mu (\nabla_\mu + \nabla^*_\mu) - a \nabla^*_\mu \nabla_\mu \right] + m_0 + i \mu \gamma_5 \tau_3 \]

- \(D_{tm} \) is protected against unphysically small eigenvalues,
- has a strictly positive measure,
- differs from Wilson formulation only by lattice artifacts because Wilson term \(a \nabla^*_\mu \nabla_\mu \) is not invariant under change of variables,
Wilson Twisted Mass Dirac operator \[D_{tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_\mu (\nabla_\mu + \nabla^*_\mu) - a \nabla^*_\mu \nabla_\mu \right] + m_0 + i \mu \gamma_5 \tau_3\]

- \(D_{tm}\) is protected against unphysically small eigenvalues,
- has a strictly positive measure,
- differs from Wilson formulation only by lattice artifacts
 because Wilson term \(a \nabla^*_\mu \nabla_\mu\) is not invariant under change of variables,

...and most importantly:
- this difference can be tuned to obtain \(O(a)\) improvement.
\(\mathcal{O}(a) \) Improvement

- If \(\omega = \pi/2 \) (maximal twist) then ...
 - observables are \(\mathcal{O}(a) \) improved [Frezzotti & Rossi '03]:
 - shown to work in practice for various observables in the quenched approximation [Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05],
\(\mathcal{O}(a) \) Improvement

- If \(\omega = \pi/2 \) (maximal twist) then ...
 - observables are \(\mathcal{O}(a) \) improved [Frezzotti & Rossi '03]:
 - shown to work in practice for various observables in the quenched approximation [Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05],
 - simplified pattern of operator mixing under renormalisation,
If $\omega = \pi/2$ (maximal twist) then ...

- observables are $O(a)$ improved \cite{Frezzotti & Rossi '03}:
 - shown to work in practice for various observables in the quenched approximation \cite{Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05},
- simplified pattern of operator mixing under renormalisation,
- only one parameter ω must be tuned,
If $\omega = \pi/2$ (maximal twist) then ...
- observables are $O(a)$ improved [Frezzotti & Rossi '03]:
 ⇒ shown to work in practice for various observables in the quenched approximation [Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05],
- simplified pattern of operator mixing under renormalisation,
- only one parameter ω must be tuned,

but...
- parity and flavour symmetry are explicitly broken, the latter leading to $m^\pm_{PS} - m^0_{PS}$ splitting.
Idea of the Proof

\[
\langle O(x) \rangle^{\text{lat}} = \langle O(x) \rangle^c - a \int dy \langle O(x) L_1(y) \rangle^c + a \sum_k \langle O_k(x) \rangle^c + O(a^2)
\]

[Rossi, Frezzotti, Martinelli, Papinutto '05]
\[
\langle O(x) \rangle^{\text{lat}} = \langle O(x) \rangle^{\text{c}} - a \int dy \langle O(x) L_1(y) \rangle^{\text{c}} + a \sum_k \langle O_k(x) \rangle^{\text{c}} + \mathcal{O}(a^2)
\]

[Rossi, Frezzotti, Martinelli, Papinutto '05]

- r.h.s.: all expectation values with continuum action: operators must obey symmetries of cont. action
Idea of the Proof

\[
\langle O(x) \rangle^{\text{lat}} = \langle O(x) \rangle^{\text{c}} - a \int dy \langle O(x) L_1(y) \rangle^{\text{c}} + a \sum_k \langle O_k(x) \rangle^{\text{c}} + \mathcal{O}(a^2)
\]

[Rossi, Frezzotti, Martinelli, Papinutto '05]

- r.h.s.: all expectation values with continuum action: operators must obey symmetries of cont. action
- all operators in the expansion must share lattice symmetries of \(O \)
Idea of the Proof

\[
\langle O(x) \rangle_{\text{lat}} = \langle O(x) \rangle^c - a \int dy \langle O(x) L_1(y) \rangle^c + a \sum_k \langle O_k(x) \rangle^c + \mathcal{O}(a^2)
\]

[Rossi, Frezzotti, Martinelli, Papinutto '05]

- **r.h.s.:** all expectation values with continuum action: operators must obey symmetries of cont. action
- **all operators in the expansion must share lattice symmetries of** \(O \)
- **example:** cont. symmetry modified Parity

\[\tilde{\mathcal{P}} : \begin{cases}
\psi(\bar{x}, t) & \rightarrow \gamma_0 \exp(i \omega \gamma_5 \tau_3) \psi(-\bar{x}, t) \\
\bar{\psi}(\bar{x}, t) & \rightarrow \bar{\psi}(-\bar{x}, t) \exp(i \omega \gamma_5 \tau_3) \gamma_0
\end{cases} \]
\[\langle O(x) \rangle_{\text{lat}} = \langle O(x) \rangle^c - a \int dy \langle O(x) L_1(y) \rangle^c + a \sum_k \langle O_k(x) \rangle^c + \mathcal{O}(a^2) \]

[Rossi, Frezzotti, Martinelli, Papinutto ’05]

- r.h.s.: all expectation values with continuum action: operators must obey symmetries of cont. action
- all operators in the expansion must share lattice symmetries of \(O \)
- example: cont. symmetry modified Parity

\[\tilde{\mathcal{P}} : \begin{cases} \psi(\vec{x}, t) & \rightarrow \gamma_0 \exp(i\omega \gamma_5 \tau_3)\psi(-\vec{x}, t) \\ \bar{\psi}(\vec{x}, t) & \rightarrow \bar{\psi}(-\vec{x}, t) \exp(i\omega \gamma_5 \tau_3)\gamma_0 \end{cases} \]

- \(O \) must be even under \(\tilde{\mathcal{P}} \), \(L_1 \) is odd: term cancels in the expansion.
Choose an operator O not invariant under \tilde{P},
Choose an operator O not invariant under \tilde{P},

tune m_0 such that O has vanishing expt. value at each lattice spacing and fixed physical situation,
Choose an operator O not invariant under $\tilde{\mathcal{P}}$,

tune m_0 such that O has vanishing expt. value at each lattice spacing and fixed physical situation,

\Rightarrow this guarantees $\mathcal{O}(a)$ improvement, independently of the choice of O.
Choose an operator O not invariant under \tilde{P},

tune m_0 such that O has vanishing expt. value at each lattice spacing and fixed physical situation,

\Rightarrow this guarantees $O(a)$ improvement, independently of the choice of O.

Example:

$$m_{PCAC} \equiv \left. \frac{\langle \partial_\mu A^a_\mu(x) P^a(y) \rangle}{2 \langle P^a(x) P^a(y) \rangle} \right\vert_{m_{PS}=m_{ref}} = 0$$

with A^a_μ and P^a the axial vector current and the pseudo-scalar density, respectively.
Lattice Formulation of QCD
HMC Algorithm
Wilson Twisted Mass Fermions

Test in Quenched Approximation of QCD

\[f_{PS} \text{ [MeV]} \]

\[a^2 \text{ [fm}^2] \]

- \(m_{PS} = 298 \text{ MeV} \)
- \(m_{PS} = 515 \text{ MeV} \)
- \(m_{PS} = 718 \text{ MeV} \)

[Jansen et al., '05]
Members from many institutions all over Europe:

Set-up

\(N_f = 2 \) flavours of degenerate quarks, maximally twisted,
Set-up

- $N_f = 2$ flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
Set-up

- $N_f = 2$ flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,
\(N_f = 2 \) flavours of degenerate quarks, maximally twisted,

- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,
- values of \(m_{PS} \) between 250 and 600 MeV,
Set-up

- $N_f = 2$ flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,
- values of m_{PS} between 250 and 600 MeV,
- algorithm: HMC with Hasenbusch preconditioning and multiple time scales [Jansen, Shindler, Urbach, U.W. '04],
Set-up

- $N_f = 2$ flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,
- values of m_{PS} between 250 and 600 MeV,
- algorithm: HMC with Hasenbusch preconditioning and multiple time scales \cite{Jansen, Shindler, Urbach, U.W. '04},
- gauge action: treelevel Symanzik improved \cite{Weisz '83}.
<table>
<thead>
<tr>
<th>$a\mu$</th>
<th>$L^3 \times T$</th>
<th>m_{PS} [MeV]</th>
<th>N_{traj}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0040</td>
<td>$24^3 \times 48$</td>
<td>280</td>
<td>5000</td>
</tr>
<tr>
<td>0.0064</td>
<td>$24^3 \times 48$</td>
<td>350</td>
<td>5000</td>
</tr>
<tr>
<td>0.0085</td>
<td>$24^3 \times 48$</td>
<td>390</td>
<td>5000</td>
</tr>
<tr>
<td>0.0100</td>
<td>$24^3 \times 48$</td>
<td>430</td>
<td>5000</td>
</tr>
<tr>
<td>0.0150</td>
<td>$24^3 \times 48$</td>
<td>510</td>
<td>5000</td>
</tr>
<tr>
<td>0.0040</td>
<td>$24^3 \times 32$</td>
<td>280</td>
<td>5000</td>
</tr>
<tr>
<td>0.0040</td>
<td>$20^3 \times 48$</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>0.0040</td>
<td>$32^3 \times 64$</td>
<td>280</td>
<td>5000</td>
</tr>
</tbody>
</table>
\[\beta = 4.05, \ a \approx 0.07 \text{ fm (preliminary)} \]

<table>
<thead>
<tr>
<th>$a\mu$</th>
<th>$L^3 \times T$</th>
<th>m_{PS} [MeV]</th>
<th>N_{traj}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003</td>
<td>$32^3 \times 64$</td>
<td>270</td>
<td>5000</td>
</tr>
<tr>
<td>0.006</td>
<td>$32^3 \times 64$</td>
<td>370</td>
<td>5000</td>
</tr>
<tr>
<td>0.008</td>
<td>$32^3 \times 64$</td>
<td>-</td>
<td>3000</td>
</tr>
<tr>
<td>0.012</td>
<td>$32^3 \times 64$</td>
<td>520</td>
<td>3000</td>
</tr>
</tbody>
</table>
\[\beta = 3.80, \, a \approx 0.12 \text{ fm (preliminary)} \]

<table>
<thead>
<tr>
<th>(a_{\mu})</th>
<th>(L^3 \times T)</th>
<th>(m_{PS}) [MeV]</th>
<th>(N_{\text{traj}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>(20^3 \times 48)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.009</td>
<td>(20^3 \times 48)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.012</td>
<td>(20^3 \times 48)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.015</td>
<td>(20^3 \times 48)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) Tuning is ongoing...
Many massively parallel machines throughout Europe:

- IBM p960 Regatta and BlueGene/L at FZ-Jülich,
- apeNEXT at DESY Zeuthen and Rome,
- MareNostrum in Valencia,
- QCDOC in Edinburgh,
- Altix system at LRZ Munich (pending),
- local PC-clusters and -farms, etc.
Machines
Many different choices are possible:

- choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
- at finite a tune its v.e.v. to zero by adjusting $a m_0$.
Many different choices are possible:
- choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
- at finite a tune its v.e.v. to zero by adjusting am_0.

We tune

$$m_{PCAC} = \frac{\sum_x \langle \partial_0 A_0^a(x) P^a(0) \rangle}{2 \sum_x \langle \partial_0 P^a(x) P^a(0) \rangle} = 0, \quad a = 1, 2$$

at $a\mu_{\text{min}}$.
Many different choices are possible:

- choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
- at finite a tune its v.e.v. to zero by adjusting $a m_0$.

We tune

$$m_{\text{PCAC}} = \frac{\sum_x \langle \partial_0 A_0^a(x) P^a(0) \rangle}{2 \sum_x \langle \partial_0 P^a(x) P^a(0) \rangle} = 0, \quad a = 1, 2$$

at $a \mu_{\text{min}}$.

Involves at each value of a several (expensive) tuning simulations.
Many different choices are possible:

- choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
- at finite a tune its v.e.v. to zero by adjusting am_0.

We tune

$$m_{\text{PCAC}} = \frac{\sum_x \langle \partial_0 A_a^0(x) P^a(0) \rangle}{2 \sum_x \langle \partial_0 P^a(x) P^a(0) \rangle} = 0, \quad a = 1, 2$$

at $a_{\mu_{\text{min}}}$.

Involves at each value of a several (expensive) tuning simulations.

It was not obvious at the beginning that this tuning is feasible!
Tuning to full twist is possible with reasonable computer resources!

- needs to be done on the target lattice volume,
Tuning to Maximal Twist

Tuning to full twist is possible with reasonable computer resources!

- needs to be done on the target lattice volume,

- at $\beta = 3.90$ and $\beta = 4.05$ the PCAC mass is zero within errors at μ_{\min},
Tuning to full twist is possible with reasonable computer resources!

- needs to be done on the target lattice volume,
- at \(\beta = 3.90 \) and \(\beta = 4.05 \) the PCAC mass is zero within errors at \(\mu_{\text{min}} \),
- we see deviations for the other \(\mu \)-values (as expected),
Tuning to Maximal Twist

Tuning to full twist is possible with reasonable computer resources!

- needs to be done on the target lattice volume,
- at $\beta = 3.90$ and $\beta = 4.05$ the PCAC mass is zero within errors at μ_{min},
- we see deviations for the other μ-values (as expected),
- μ-dependence is a $O(a)$ cut-off effect modifying the $O(a^2)$ artefacts in physical obervables.
Lattice spacing a is the only dimensionful quantity in the game,
Lattice spacing a is the only dimensionful quantity in the game,

so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.
Lattice spacing a is the only dimensionful quantity in the game,

so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.

One possibility is the Sommer parameter r_0, defined via the force between two static quarks [Sommer ’94]

$$r^2 F(r)|_{r=r(c)} = c, \quad r_0 = r(1.65)$$
Lattice spacing a is the only dimensionful quantity in the game,

so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.

One possibility is the Sommer parameter r_0, defined via the force between two static quarks [Sommer '94]

$$r^2 F(r)\big|_{r=r(c)} = c, \quad r_0 = r(1.65)$$

r_0/a can be measured with high accuracy
Lattice spacing a is the only dimensionful quantity in the game,

so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.

One possibility is the Sommer parameter r_0, defined via the force between two static quarks \cite{Sommer '94}

$$r^2 F(r)|_{r=r(c)} = c, \quad r_0 = r(1.65)$$

r_0/a can be measured with high accuracy

$r_0 \approx 0.5\text{fm}$ is only known approximately.
Sommer Parameter

- Sommer parameter r_0 at $\beta = 3.90$:
Sommer parameter r_0 at $\beta = 3.90$:

- accuracy of less than 0.5%,
- depends on $(a\mu)^2$, as expected,
Sommer parameter r_0 at $\beta = 3.90$:
- accuracy of less than 0.5%,
- depends on $(a\mu)^2$, as expected,
- dependence is rather weak.

\[(r_0/a) \]

\[(a\mu)^2 \]
Sommer parameter r_0 at $\beta = 3.90$:

- accuracy of less than 0.5%,
- depends on $(a\mu)^2$, as expected,
- dependence is rather weak.

\Rightarrow $r_0/a = 5.22(2)$ at the physical point.
Pion Sector: \(m_{PS} \) and \(f_{PS} \)

- \(m_{PS} \) from exponential decay of appropriate correlation functions
Pion Sector: m_{PS} and f_{PS}

- m_{PS} from exponential decay of appropriate correlation functions

- f_{PS} can be extracted at maximal twist from

$$f_{PS} = \frac{2\mu}{m_{PS}^2} |\langle 0 | P^1(0) | \pi \rangle|$$

due to an exact lattice Ward identity [Frezzotti, Grassi, Sint, Weisz '01].
Pion Sector: m_{PS} and f_{PS}

- m_{PS} from exponential decay of appropriate correlation functions

- f_{PS} can be extracted at maximal twist from

$$f_{PS} = \frac{2\mu}{m_{PS}^2} |\langle 0 | P^1(0) | \pi \rangle|$$

due to an exact lattice Ward identity [Frezzotti, Grassi, Sint, Weisz '01].

- No renormalisation factor needed!
 - since $Z_{\mu} = 1/Z_P$
 - similar to overlap fermions (exact chiral symmetry)
 - unlike pure Wilson
Describe mass and L dependence with $N_f = 2$ χPT at NLO

\[m_{PS}^2 = 2B_0\mu \left[1 + \frac{1}{2} \xi \tilde{g}_1(\lambda) \right]^2 \left[1 + \xi \log\left(\frac{2B_0\mu}{\Lambda^2_3}\right) \right] \]

\[f_{PS} = F_0 \left[1 - \xi \tilde{g}_1(\lambda) \right] \left[1 - 2\xi \log\left(\frac{2B_0\mu}{\Lambda^2_4}\right) \right] \]

with $\xi = \frac{2B_0\mu}{(2\pi F_0)^2}$, $\lambda = \sqrt{2B_0\mu L^2}$ and $\tilde{g}_1(\lambda)$ is a known function.
Describe mass and L dependence with $N_f = 2$ χPT at NLO

\[m_{PS}^2 = 2B_0 \mu \left[1 + \frac{1}{2} \xi \tilde{g}_1(\lambda) \right]^2 \left[1 + \xi \log(2B_0 \mu / \Lambda_3^2) \right] \]

\[f_{PS} = F_0 \left[1 - \xi \tilde{g}_1(\lambda) \right] \left[1 - 2\xi \log(2B_0 \mu / \Lambda_4^2) \right] \]

with $\xi = 2B_0 \mu / (2\pi F_0)^2$, $\lambda = \sqrt{2B_0 \mu L^2}$ and $\tilde{g}_1(\lambda)$ is a known function.

Fit simultaneously to our data:
fit parameters B_0, F_0, $\log \Lambda_3^2$, $\log \Lambda_4^2$
Pion Sector: m_{PS} at $\beta = 3.9$

- **excellent description by chiral perturbation theory**,
Pion Sector: m_{PS} at $\beta = 3.9$

- excellent description by chiral perturbation theory,
- sensitivity to Λ_3 exposed.
Pion Sector: \(f_{PS} \) at \(\beta = 3.9 \)

\[
2aB_0 = 4.99(6), \quad aF = 0.0534(6)
\]

\[
a^2 \overline{t}_3^2 \equiv \log(a^2 \Lambda_3^2) = -1.93(10),
\]

\[
a^2 \overline{t}_4^2 \equiv \log(a^2 \Lambda_4^2) = -1.06(4)
\]
determination of $\bar{l}_{3,4} \equiv \log(\Lambda_{3,4}/m_\pi)$:

$$\bar{l}_3 = 3.65 \pm 0.12, \quad \bar{l}_4 = 4.52 \pm 0.06$$

$$F_0 = 121.3(7) \text{ MeV}$$
determination of \(\bar{l}_{3,4} \equiv \log(\Lambda_{3,4}/m_\pi) \):

\[
\bar{l}_3 = 3.65 \pm 0.12, \quad \bar{l}_4 = 4.52 \pm 0.06
\]

\[F_0 = 121.3(7) \text{ MeV} \]

from \(\bar{l}_4 \) follows the radius of the scalar pion form factor:

\[< r^2 >_s = 0.637 \pm 0.026 \text{ fm}^2 \]
determination of $\bar{l}_3,4 \equiv \log(\Lambda_{3,4}/m_\pi)$:

$$\bar{l}_3 = 3.65 \pm 0.12, \quad \bar{l}_4 = 4.52 \pm 0.06$$

$$F_0 = 121.3(7) \text{ MeV}$$

from \bar{l}_4 follows the radius of the scalar pion form factor:

$$\langle r^2 \rangle_s = 0.637 \pm 0.026 \text{ fm}^2$$

determine the lattice spacing with $f_\pi = 130.7 \text{ MeV}$

$$a = 0.087(1) \text{ fm} \quad \Rightarrow \quad r_0 = 0.454(7) \text{ fm}$$
\(a_0^0 = 0.220 \pm 0.002, \quad a_0^2 = -0.0449 \pm 0.0003 \)
Note: all errors are statistical only!

- we are assuming that lattice artifacts are negligible

All this needs to be checked!
Note: all errors are statistical only!

- we are assuming that lattice artifacts are negligible
- we are assuming that NLO χPT is sufficient to describe the mass dependence

All this needs to be checked!
Note: all errors are statistical only!

- we are assuming that lattice artifacts are negligible
- we are assuming that NLO χPT is sufficient to describe the mass dependence
- we are assuming that finite size effects are correctly described by χPT to that order

All this needs to be checked!
Preliminary Check for Lattice Artifacts

Combined fit of two lattice spacings:

\[
\frac{(a f_{PS})}{(a F_0)} \quad \beta = 3.9
\]

\[
\frac{(a f_{PS})}{(a F_0)} \quad \beta = 4.05
\]

Lattice artefacts seem to be very small!
At finite lattice spacing flavour symmetry is broken at $\mathcal{O}(a^2)$:

- Isospin is broken at $a > 0$,
- strongest for $m_{PS}^+ - m_{PS}^0$,
- breaking vanishes as $m_{PS}^+ - m_{PS}^0 = c_2 a^2$,
- $\Delta \equiv (m_{PS}^+ - m_{PS}^0)/m_{PS}^+ \sim 25\%$
At finite lattice spacing flavour symmetry is broken at $\mathcal{O}(a^2)$:

- at $\beta = 3.90$: splitting 25% of charged m_{PS}
- at $\beta = 4.05$: splitting 10% of charged m_{PS}
Neutral pion lighter than charged:
- this is consistent with prediction from χPT,
- problems for FS correction formula?

Pion splitting decreases with a^2 as expected,

disconnected contribution in π^0 is large
and reduces the difference.

Compared to quenched the effect is strongly reduced.
Prime example for lattice calculations.
Prime example for lattice calculations.

Estimates of quark masses:

\[m_{u,d}^{\overline{\text{MS}}, 2 \text{ GeV}} = 4.1(2) \text{ MeV} \]

\[m_{s}^{\overline{\text{MS}}, 2 \text{ GeV}} = 115(2) \text{ MeV} \]

\[m_{c}^{\overline{\text{MS}}, 2 \text{ GeV}} = 1.4(1) \text{ GeV} \]
Prime example for lattice calculations.

Estimates of quark masses:

\[
\begin{align*}
m_{u,d}(\overline{\text{MS}}, 2 \text{ GeV}) &= 4.1(2) \text{ MeV} \\
m_s(\overline{\text{MS}}, 2 \text{ GeV}) &= 115(2) \text{ MeV} \\
m_c(\overline{\text{MS}}, 2 \text{ GeV}) &= 1.4(1) \text{ GeV}
\end{align*}
\]

as a first attempt: used renormalisation constants of bilinear quark operators from RI-MOM
Setting the stage

Pion Sector

Other Physics

Topological susceptibility

(PRELIMINARY)
The cake is prepared...
Calculations under way or planned

- Other mesons: ρ, a_0, b_1, \ldots
- Pion form factors: $F_{S,V}$
- Baryons: $N, P, \Delta^+, \Delta^{++}, \ldots$
- Charm sector: $f_D, m_{D_S}/m_D$
- String breaking, ρ-decay
- Topological susceptibility
- Adler function: $g - 2, \alpha_s$
And what about the strange ...?

With twisted mass $N_f = 2 + 1 + 1$ flavours are possible

[Frezzotti & Rossi '03]
With twisted mass $N_f = 2 + 1 + 1$ flavours are possible

[Frezzotti & Rossi '03]

$O(a)$ improvement at maximal twist
And what about the strange ...?

- With twisted mass $N_f = 2 + 1 + 1$ flavours are possible

 [Frezzotti & Rossi ’03]

- $O(a)$ improvement at maximal twist

- algorithms are ready [Montvay & Scholz ’05; Chiarappa, Frezzotti, Urbach ’05]
With twisted mass $N_f = 2 + 1 + 1$ flavours are possible

$O(a)$ improvement at maximal twist

algorithms are ready [Montvay & Scholz ’05; Chiarappa, Frezzotti, Urbach ’05]

exploratory studies have been performed [Chiarappa et al., ’06]
And what about the strange ...?

With twisted mass \(N_f = 2 + 1 + 1 \) flavours are possible

[Frezzotti & Rossi '03]

\(\mathcal{O}(a) \) improvement at maximal twist

algorithms are ready [Montvay & Scholz '05; Chiarappa, Frezzotti, Urbach '05]

exploratory studies have been performed [Chiarappa et al., '06]

 tuning possible
We have a sound set-up:

- $O(a)$ improvement with maximally twisted mass fermions,
- highly tuned algorithms available,
We have a sound set-up:
- $O(a)$ improvement with maximally twisted mass fermions,
- highly tuned algorithms available,

First physics results with light quarks on fine lattices:
- m_{PS} as light as 280 MeV,
- lattice spacings $\lesssim 0.1$ fm,
- volumes larger 2 fm,
- stable simulations,
- lattice artifacts seem to be small.
Simulate larger volumes and check for finite size effects,
continuum extrapolation,
mixed action approach:
Neuberger fermions in the valence sector → e.g. B_K,
long term objective: $2 + 1 + 1$ flavours of quarks.