Determination of r_0/a

Urs Wenger (ETH Zürich)

ETMC meeting Firenze – 6 February 2007

Methodology I

- Advantages of using r_0/a to set the scale:
 - good to have as many quantitites as possible
 - it's a purely gluonic quantity
 - allows a fair comparison with results from other actions
 - can be determined rather precisely
- Disadvantage:
 - the value of r_0 in physical units is not well known

Methodology II

- Calculate the static potential from smeared Wilson loops:
 - static action uses HYP-smeared temporal gauge links with

$$\alpha = (1.0, 1.0, 0.5)$$

 operator basis consists of 5 operators at different levels of spatial APE-smearing,

$$n_{\text{smear}} = \{0, 8, 8, 8, 8\}, \quad \alpha = (1.0, 0.5)$$

leading to

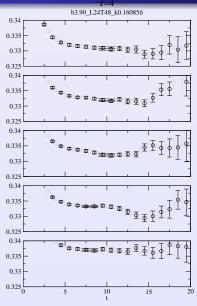
$$C_{\alpha\beta}(t;r) = \langle 0|\mathcal{O}_{\alpha}(t;r)\mathcal{O}_{\beta}^{\dagger}(0;r)|0\rangle,$$

- only on-axis Wilson loops are used.
- For each r we use a generalised eigenvalue system

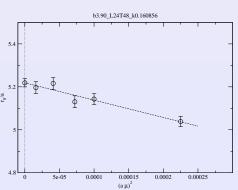
$$C(t_1)v = e^{-E(t_1-t_0)}C(t_0)v$$

to project the correlator matrix down to one operator, for which the fitting plateaus are identified,

 the static potential is then directly fitted to the correlator using the interpolating ansatz


$$C(t; r) = Ae^{-(V0 + \alpha/r + \sigma r)t}$$

over the previously determined plateaus in *t* and over a small range in *r*,


- the fit takes into account all the correlations in *t* and *r* using an appropriate covariance matrix,
- errors are from a bootstrap procedure (and crosschecked with jackknife) using binning.

Results

- Effective masses for $\mu = 0.004$ (top) to 0.015 (bottom) at r = 4:
 - systematic errors from the interpolation in r and from excited states,
 - estimated by varying the fit ranges in t and r,
 - always within $1 2\sigma$,
 - overlap could still be improved.
- Fits in r, t yield $\chi^2/\text{dof} \sim 0.5 1.5$,
- Errors on r_0/a are 0.5 1.0%.

• Dependence on quark mass $\propto (a\mu)^2$ leading to $r_0/a = 5.219(19) - 8.07(157)(10a\mu)^2$

with
$$\chi^2/\text{dof} = 0.85$$
 and dof = 3.

Using only 4 lowest μ-values

$$r_0/a = 5.222(29) - 8.77(430)(10a\mu)^2$$

with $\chi^2/\text{dof} = 1.26$ and

dof = 3.

- Excited states can also be estimated, with accuracy of a few percent.
- Analysis at $\beta = 4.05$ is ongoing,
- Preliminary result from 196 (very correlated) measurements at $\beta = 3.80, \mu = 0.006$,

$$r_0/a = 4.396(40)$$

