ETMColl.: Discussion on ChPT

Open issues on ChPT fits (left from hep-lat/0701012):

- Lattice Artifacts
- Finite Size Effects
- NNLO
- in particular: effects on Chiral fit related to Flavor symm. breaking.

Other issues:

- error analysis
- $-a=a(\beta)$

- ...

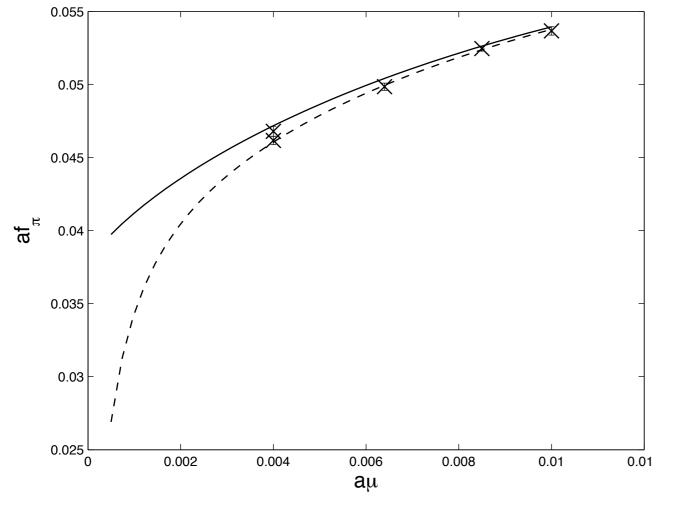
Finite Size Effects

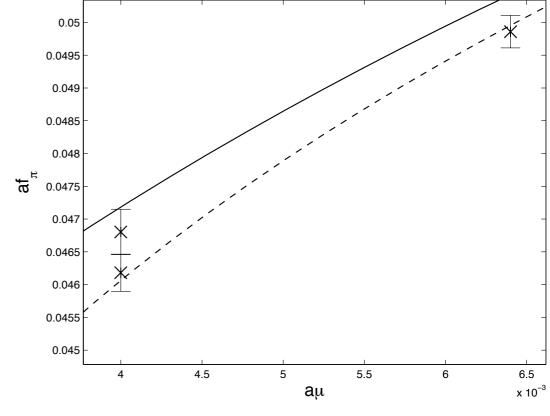
L	$M_{\Pi}(L)$	$M_{\Pi}(I)$	$M_{\Pi}(2)$	$M_{\Pi}(3)$
24	0.1359(7)	-0.9% 0.1347	0.1353	0.1350
32	0.1337(2)	0.1335	0.1336	0.1335

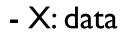
L	F _π (L)	$F_{\pi}(1)$	F _π (2)	F _π (3)
24	0.0653(4)	0.0669	0.0664	0.0669
32	0.0662(5)	0.0665	0.0664	0.0665

- (I) CDH, expansion parameter for Finite Size effects: I/F
- (2) GL, I/F
- (3) GL, I/F_0

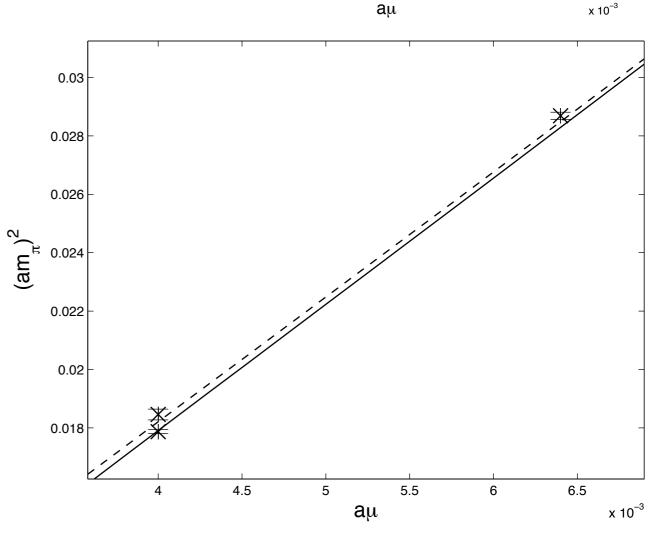
Update of the results


β=3.9 ONLY old: only L=24 new: include L=32

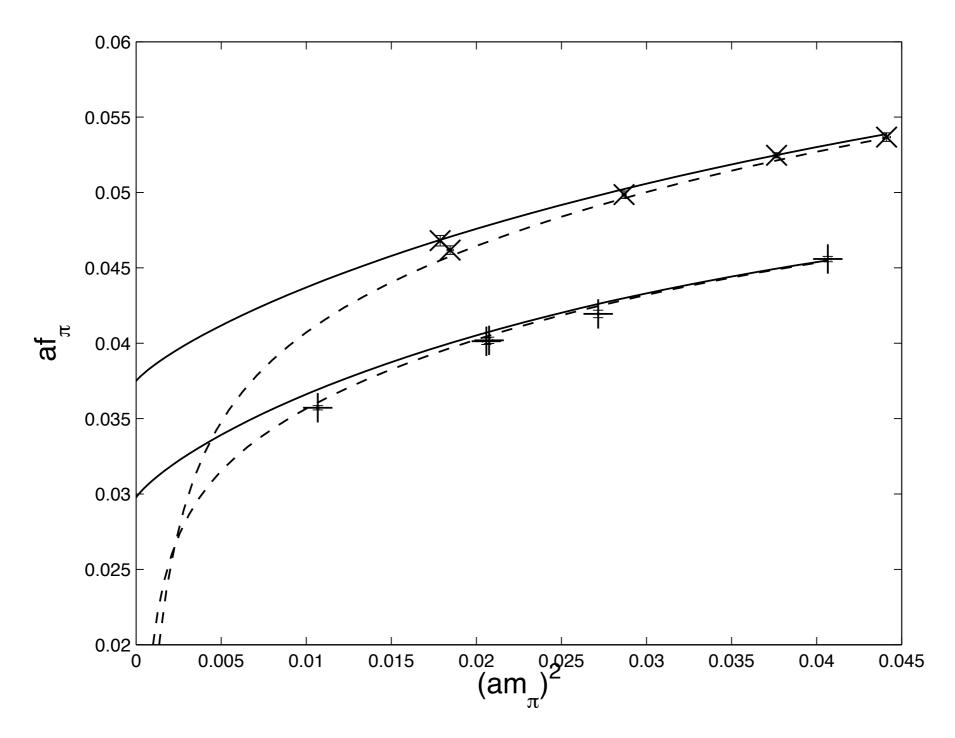

	(3) old	(2) old	(I) old	(3) new	(2) new	(I) new
2aB ₀	4.99(7)	5.04(7)	4.98(7)	4.84(3)	4.86(3)	4.83(3)
aF ₀	0.0534(7)	0.0523(8)	0.0532(8)	0.0535(6)	0.0528(6)	0.0533(6)
2 log(a∧₃)	-1.92(12)	-1.90(11)	-1.96(12)	-2.22(8)	-2.23(8)	-2.23(8)
2 log(aΛ ₄)	-1.06(5)	-1.03(5)	-1.05(5)	-1.03(4)	-1.01(4)	-1.03(4)
χ^2 /n	0.15	0.14	0.15	1.65	2.05	1.35


Important effect on Λ_3 (and B_0), while Λ_4 and F_0 are stable

The errorbars take into account non-linear implicit fitting procedure but:


- -neglet cross correlation of basic parameters (easy to include)
- -neglet autocorrelation (more work to adapt the Γ -method).

- dashed lines: fit of Finite Volume formulae
- cont. lines: Infinite Volume extrapolation.


Does ChPT have an explanation?

- FSE Leading Order from Gasser Leutwyler NO
- FSE NLO from Colangelo Dürr Haefli: tryed NO
- ChPT with non degenerate u, d quarks: very different
- compute Matrix element which enter CDH formulae with Wilson ChPT: maybe ?!?
- other reason: T not large enough ?!?

Lattice Artifacts

Plan:

- check the scaling.
- If fails, compelling to check WChPT.
- If the scaling is good, still might be helpful to check lattice artifacts with WChPT.

Scaling seems reasonable, but only marginally within errorbars.

NNLO

A simple test: (inspired to the substitution I/F_0 --- I/F_{π} as expansion parameter)

x'(-)

No convergence

$$M_{\pi}^{2} = 2B_{0}\mu(1 - \frac{x}{2}l_{3})$$

$$F_{\pi} = F_{0}(1 + xl_{4})$$

$$x = \frac{2B_{0}\mu}{(4\pi F_{0})^{2}} \longrightarrow x' = x(1 \pm 2xl_{4})$$

$$l_{3,4} = \log(\Lambda_{3,4}^{2}/(2B_{0}\mu))$$

	usual x	x'(+)
$2aB_0$	4.99(7)	5.20(8)
aF_0	0.0534(7)	0.0516(9)
$2 \log(a\Lambda_3)$	-1.92(12)	-2.19(7)
2 log(a Λ_4)	-1.06(5)	-1.76(1)
χ^2 /n	0.15	1.5

Definition of fixed lattice spacing at different masses

- Pion mass splitting is mass independent up to NNLO: $m_{\pi\pm}^2-m_{\pi3}^2=c~a^2\sin(\omega)^2$
- -This offers a probably impractical but theoretically clear definition of lattice spacing a, which is compatible whit ChPT:
- If I use such definition of a, I am sure that I will get the continuum limit LEC's from ChPT fits.
- In the physical point all definition of a' are ok, even if: $a'=a(1+\lambda\,m/\Lambda_{\rm QCD})$ (even a=aF_\pi/(92MeV))
- However, to compare with ChPT, only those are good such that at least. Otherwise LEC's would be wrong in the continuum limit $a'=a(1+\lambda\,a\,m)$
- No problems for ratios of quantities which have ChPT predictions (for example: F_{π}/M_{π})
- But it is a problem when fitting for example: aF_{π}

Is it possible to prove that the usual definition $a=a(\beta)$ has a good relation with the natural one in ChPT?

- The relation between the two definitions $a=a(\beta)$ and $a=a(r_0)$ has been discussed in [Aoki at Lattice 2000, Sommer at Lattice 2003].