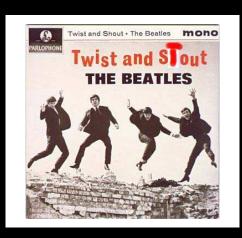
Twist and stout physics

Craig McNeile

c.mcneile@physics.gla.ac.uk

University of Glasgow

Theorems and Motivation


- 2+1+1 <> 2. Although the current twisted configurations are at impressive parameters, groups with 2+1 configurations, even if the pion masses are heavier, will always use the strange quark as a way to claim better results.
- **2 < 3**. The current n_f =2 gauge configurations have lattice spacings of around 0.1 and 0.07 fm. To do a continuum extrapolation requires data at a third lattice spacing

Goals

- The aim is to try to use "stout" links in the twisted fermion action to evade the "phase transition" around $a \sim 0.12$ fm. Test the method with n_f =2 and then use it for n_f =2 +1 +1.
- Stout smearing is variant of fat links that have an analytic derivative with the gauge fields, so they can be used in the computation of the force.
- The stouting of the gauge links smooths the gauge fields that couple to the fermion action.

More motivation.

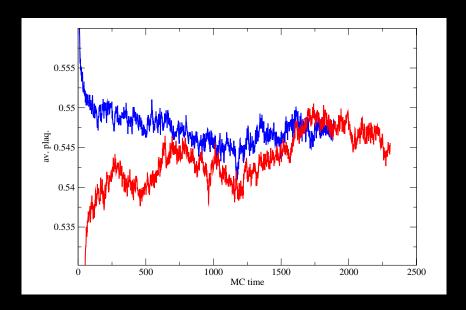
My first physics project based on a Beatles song

The song is available on youtube (google video).

What is stouting?

$$C_{\mu}(x) = \sum_{\nu \neq \mu} \rho_{\mu\nu} \Big(U_{\nu}(x) U_{\mu}(x+\hat{\nu}) U_{\nu}^{\dagger}(x+\hat{\mu}) + U_{\nu}^{\dagger}(x-\hat{\nu}) U_{\mu}(x-\hat{\nu}) U_{\nu}(x-\hat{\nu}+\hat{\mu}) \Big),$$

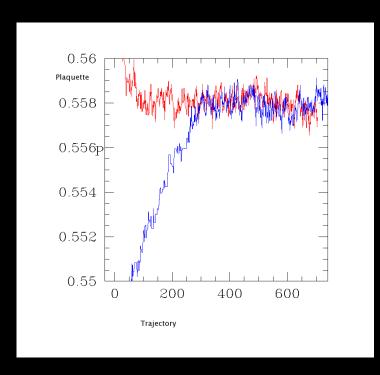
$$\begin{array}{lcl} Q_{\mu}(x) & = & \frac{i}{2}(\!\Omega_{\mu}^{\dagger}(x)\!-\!\Omega_{\mu}(x)\!)\!-\!\frac{i}{2N}\mathrm{Tr}(\!\Omega_{\mu}^{\dagger}(x)\!-\!\Omega_{\mu}(x)\!), \\ \\ \Omega_{\mu}(x) & = & C_{\mu}(x)\;U_{\mu}^{\dagger}(x), \quad \text{(no summation over μ)} \\ \\ & U_{\mu}^{(n+1)}(x) = \exp(iQ_{\mu}^{(n)}(x))\;U_{\mu}^{(n)}(x). \end{array}$$


Codes and things

The hmc application in the chroma package has code to generate twist+stout n_f =2 configurations. Chroma has been used to generate configurations on a BlueGene (Karl and Carsten) and some 256 node QCDOC machines. I added code to stout smear the gauge configuration in the "ETMC" code. (The stout smearing has NOT been added to the force term).

We use $\rho = 0.1$ and 1 iteration of stouting.

Past problems


From hep-lat/0509131, using twisted mass fermions with tree level Symanzik gauge action at β = 3.65, 12^3 24.

At β = 3.75 the minimum pion mass was found to be 400 MeV (hep-lat/0509131).

No nasty phase transition (yet)

For the parameters κ = 0.1525, β = 3.75, μ = 0.005, 16^3 32, with stout smearing. Plaquette as a function of trajectory from cold and hot starts.

Where are we in parameter space?

Very preliminary results, 16^3 $32~\mu=0.005$, $\beta=3.75$.

κ	a m_{pcac}	a m_π	r_0/a
0.1475	0.416(7)	1.25(2)	2.73(5)
0.150	0.313(3)	1.07(1)	3.16(5)
0.1525	0.186(1)	0.791(8)	4.5(2)

 $\frac{1}{a} \sim 2$ GeV, so the pions are very heavy. The r_0/a values were computed by Chris Richards (graduate student at Liverpool).

Possible problems

- Fattening or stouting will probably reduce renormalisation factors. This may not be important when non-perturbative renormalisation is used, but it is useful to have one loop expressions.
- For staggered fermions the smoothing reduced flavour symmetry violation. This was explained by Lepage as a form factor.
- The stouting of the gauge links in the fermion action is perhaps a a bit ugly.

Conclusions

- The twist and stout tuning runs are ongoing. No "show-stopers" seen yet.
- Most of the analysis code is set up, so project should speed up.
- For production this is both more work, and yet less work. Lattices smaller than $24^3 \ 48$ are easier to work with.

If the collaboration had configurations with 300 MeV pions, 2+1+1 flavours of sea quarks, and continuum limits using three lattice spacings, then we would be solving QCD.

Twist and stout physics - p. 11