
Light hadrons from N_f =2+1+1 dynamical twisted mass fermions

Siebren Reker

Outline

- ★ Twisted mass lattice action recap
- ★ Ensemble overview
 - ★ Status and strategy of tuning
- ★ NLO SU(2) pion χ PT fits
 - ★ Preliminary new lattice spacing

Not in this talk

- ★ Baryon spectrum: Drach, P22 (Tuesday)
 - ★ Nucleon matrix elements: Dinter, P2
- ★ N_f=4 setup for renormalization constants: Palao (an hour ago)
- ★ Pseudoscalar decay constants: Urbach, next
- ★ Extraction of m_K and m_D: Pallante, poster

Action

- ★ 4 flavour twisted mass fermion action: mass degenerate light doublet, mass split heavy doublet: N_f=2+(1+1)
- ★ Iwasaki gauge action
- ★ PHMC algorithm
- ★ See also arXiv:1004.5248v1

Light doublet

- ★ N_f=2+1+1 twisted mass Wilson fermions: arXiv:hep-lat/0606011v1 (Chiarappa et al.)
- $\star S_l = a^4 \sum_{x} \{ \bar{\chi}_l(x) [D[U] + m_{0,l} + i\mu_l \gamma_5 \tau_3] \chi_l(x) \}$
- \star Twisted basis: $\chi_l = \begin{pmatrix} \chi_u \\ \chi_d \end{pmatrix}$
- $\star \psi_l^{phys} = e^{\frac{i}{2}\omega_l \gamma_5 \tau_3} \chi_l \quad \omega_l = \frac{\pi}{2}$
- \star $am_{0,l} \equiv 1/2\kappa 4$

Heavy doublet

- ★ Mass-split heavy doublet, details: arXiv:hep-lat/0311008v2 (Frezzotti, Rossi)
- $\star S_h = a^4 \sum_{\pi} \{ \bar{\chi}_h(x) [D[U] + m_{0,h} + i\mu_{\sigma} \gamma_5 \tau_1 + \mu_{\delta} \tau_3] \chi_h(x) \}$
- \star Twisted basis: $\chi_h = \begin{pmatrix} \chi_c \\ \chi_s \end{pmatrix}$
- $\star \psi_h^{phys} = e^{\frac{i}{2}\omega_h \gamma_5 \tau_1} \chi_h \quad \omega_h = \frac{\pi}{2}$
- $\star am_{0,l} = am_{0,h} \equiv 1/2\kappa 4$

Ensemble updates

- ★ New since last year:
 - ★ Some runs have extended statistics
 - * Runs to tune m_s and m_c
 - ★ Finite size effects checks
 - ★ New, smaller lattice spacing with lighter pion masses, currently down to 230 MeV

Ensembles at $\beta=1.90$

Label	κ	aμı	αμσ	aμ _δ	L/a	T/a	$m_{\pi}L$
A30.32	0.1632720	0.0030	0.150	0.190	32	64	4.0
A40.32	0.1632700	0.0040	0.150	0.190	32	64	4.5
A40.24	0.1632700	0.0040	0.150	0.190	24	48	3.5
A40.20	0.1632700	0.0040	0.150	0.190	20	48	3.0
A50.32	0.1632670	0.0050	0.150	0.190	32	64	5.1
A50.24	0.1632670	0.0050	0.150	0.190	24	48	
A60.24	0.1632650	0.0060	0.150	0.190	24	48	4.2
A80.24	0.1632600	0.0080	0.150	0.190	24	48	4.8
A80.24s	0.1632040	0.0080	0.150	0.197	24	48	4.8
A100.24	0.1632550	0.0100	0.150	0.190	24	48	5.4
A100.24s	0.1631960	0.0100	0.150	0.197	24	48	5.3
A100.24s2	0.1633	0.0100	0.109	0.135	24	48	

Done

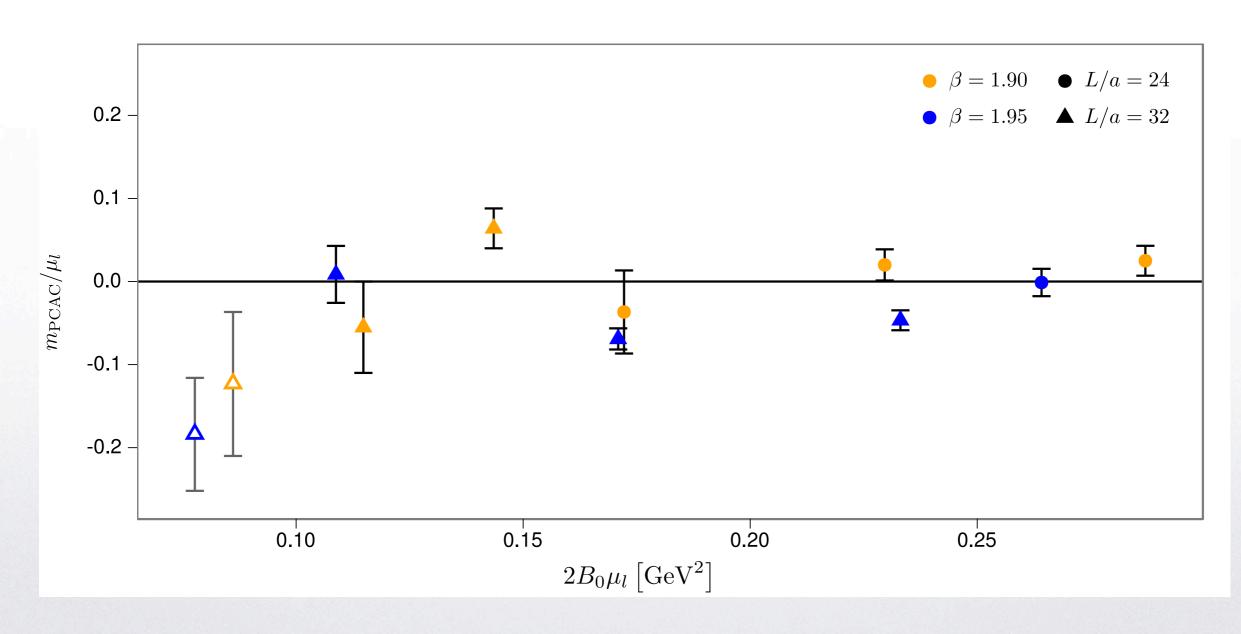
Running

$\beta = 1.95, \beta = 2.10$

Label	β	κ	aμı	aμ _σ	αμδ	L/a	T/a	$m_{\pi}L$
B25.32	1.95	0.1612410	0.0025	0.135	0.170	32	64	3.4
B35.32	1.95	0.1612400	0.0035	0.135	0.170	32	64	4.0
B55.32	1.95	0.1612360	0.0055	0.135	0.170	32	64	5.0
B75.32	1.95	0.1612320	0.0075	0.135	0.170	32	64	5.8
B85.32	1.95	0.1612312	0.0085	0.135	0.170	24	48	4.7
D115.64	2.10		0.00115	0.120	0.1385	64	128	
D15.48	2.10	0.1563610	0.0015	0.120	0.1385	48	96	3.4
D20.48	2.10	0.1563570	0.0020	0.120	0.1385	48	96	3.9
D30.48	2.10	0.1563550	0.0030	0.120	0.1385	48	96	4.7

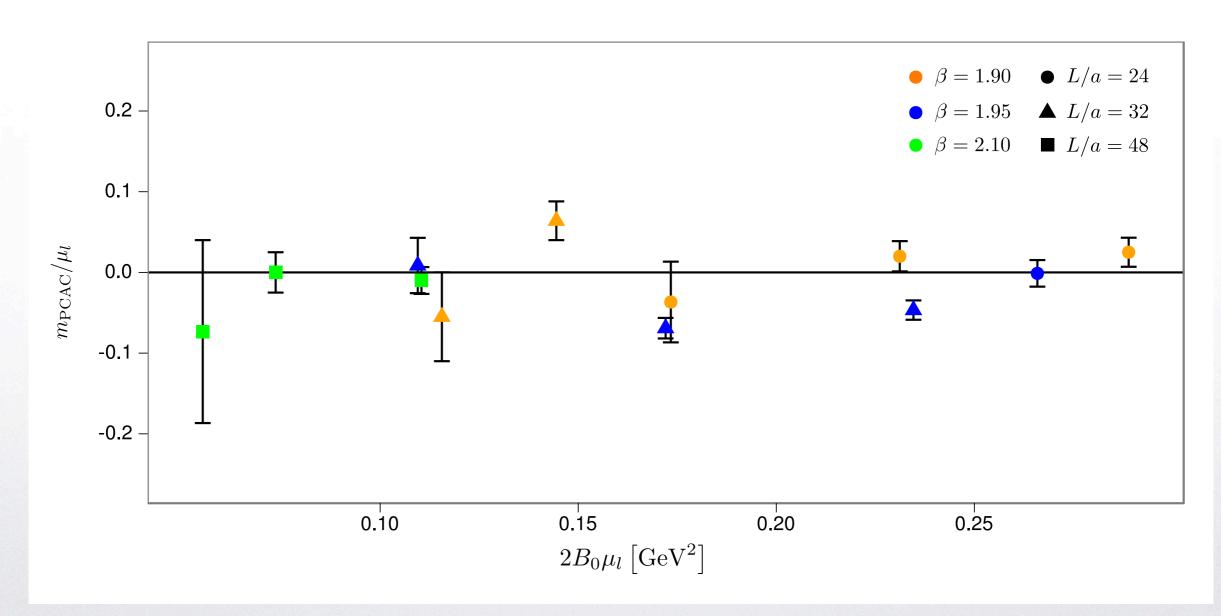
Running

Done



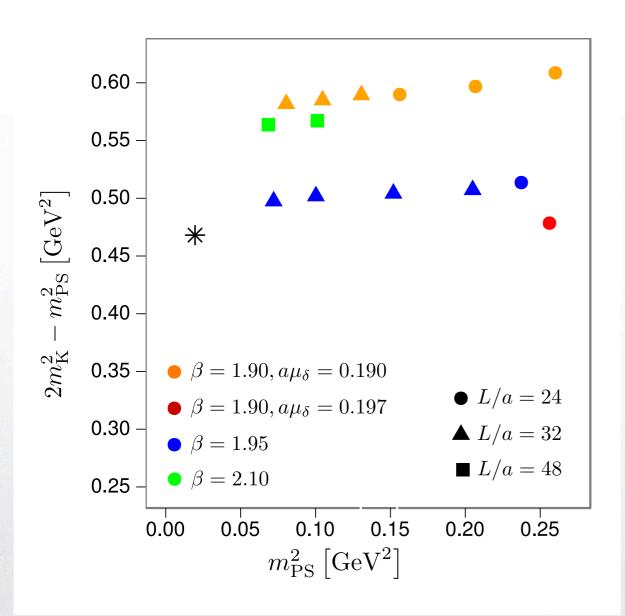
Tuning

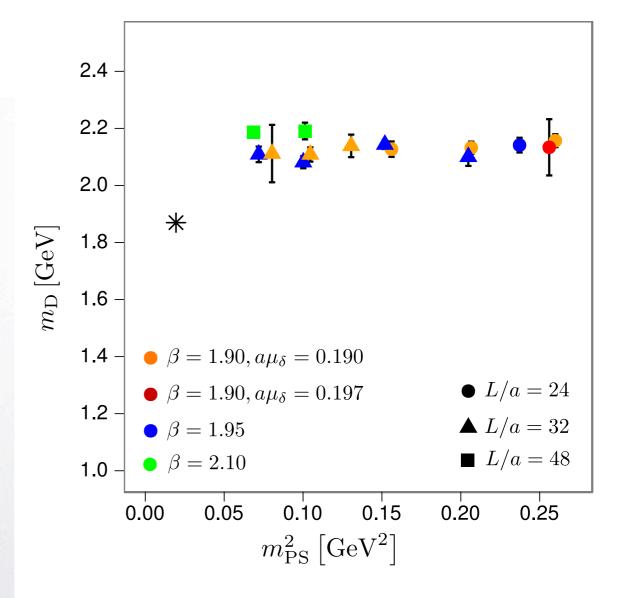
- Automatic O(a) improvement at (or near) maximal twist: $am_{PCAC,1} = 0$
- \star Tune independently to maximal twist at every μ_l , $\mu_σ$, $\mu_δ$ combination
- ★ Follow criterium: $\left| \frac{Z_{\rm A} m_{\rm PCAC}}{\mu_l} \right| \lesssim 0.1$
 - \star Z_A ~ 0.75 (preliminary)



Tuning status

Tuning status


Heavy doublet tuning


- ★ Measure kaon mass and D-meson mass
 - ★ We now have several reliable ways to extract the D-meson mass
- ★ Also measure e.g. m_{K*}, m_{D*}, f_K, (decuplet)
- ★ Mixed action approach (Urbach, next talk)

Kaon & D-meson mass

Chiral fits

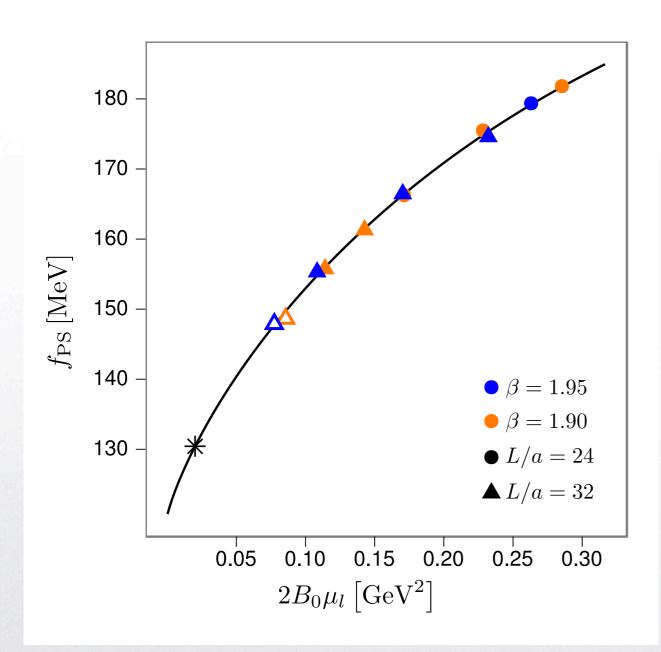
- \star Pion NLO, some tests of NNLO, O(a²)
- ★ Other decay constants covered by Urbach (next), baryons covered by Drach (P22)
- \star Consistency checks: combine spacings, separate check of r_0/a , estimate scaling
- \star Preliminary renormalization factors available at β=1.95

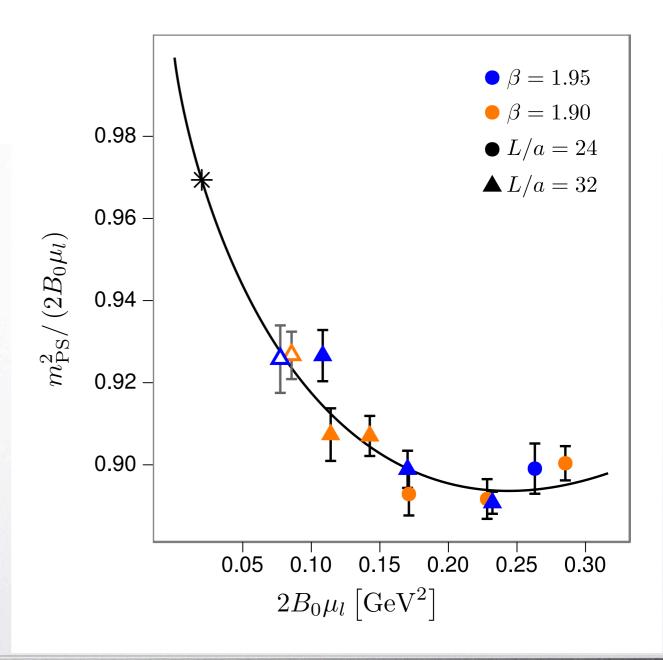
Chiral fits

- ★ Finite size effects using Colangelo, Dürr, Haefeli (CDH) resummed expression
 - ★ Use only largest volumes at each mass
- ★ Do not use new strange/charm sets (yet)
- \star Fit a ratio of Z_P for other lattice spacings
- \star Set lattice spacing by finding where f_π/m_π obtains its physical value

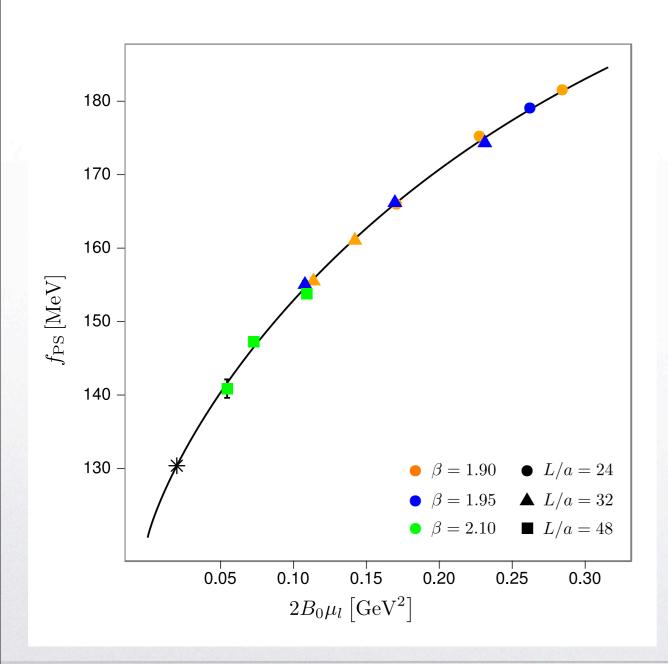
Fits (check)

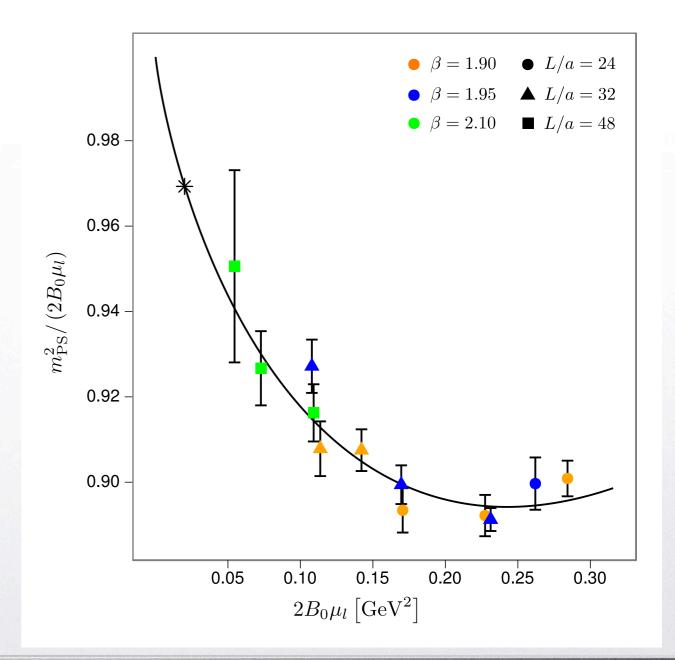
 \star A: β=1.90, B: β=1.95, D: β=2.10


Set	A	A,D	В	B,D	A,B	A,B,D	D
f_0	121.0	121.0	121.1	121.2	121.0	121.0	121.7
13	3.44	3.43	3.70	3.70	3.54	3.53	3.45
14	4.77	4.76	4.67	4.66	4.74	4.73	4.43
f_{π}/f_0	1.078	1.078	1.076	1.076	1.077	1.077	1.072
a _A (fm)	0.086	0.086			0.086	0.086	
a _B (fm)			0.078	0.078	0.078	0.078	
a _D (fm)		0.061		0.061		0.061	0.062

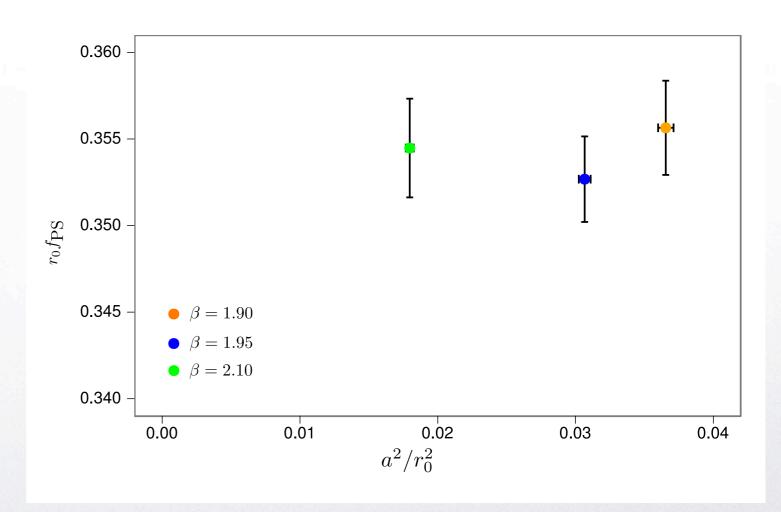


Combined fit





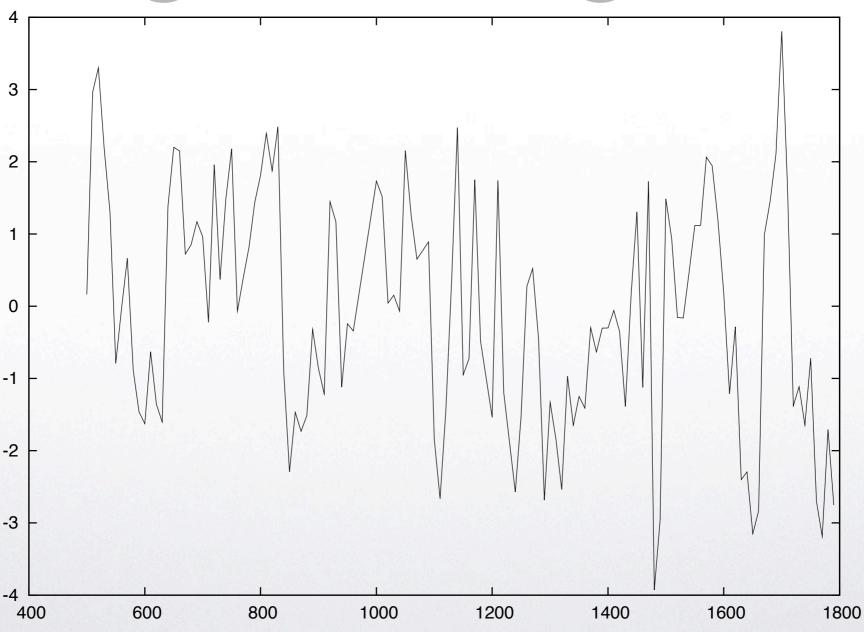
Combined fit



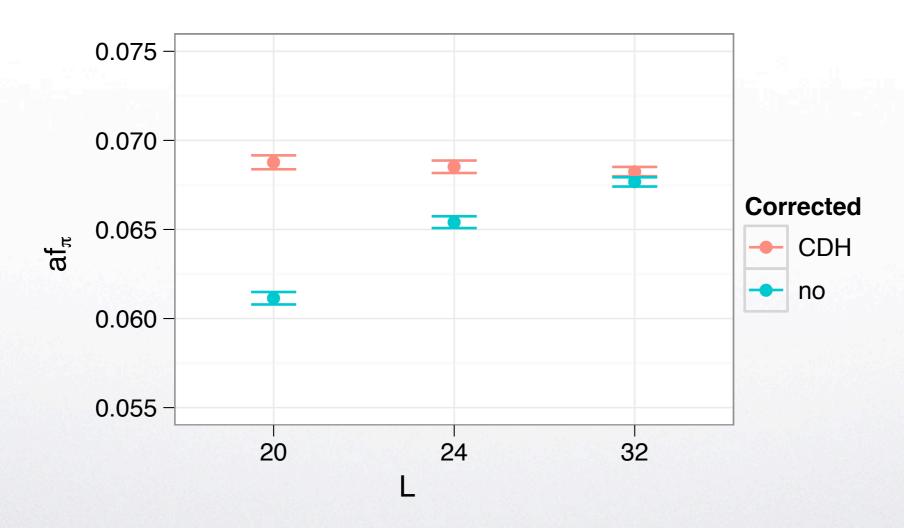
ro/a & scaling

- ★ Separate fits
- \star β =2.10 few points

β	1.90	1.95	2.10	
a (fm)	0.0859(5)	0.0782(6)	0.061(1)	
r ₀ /a	5.23(4)	5.71(4)	7.46(6)	
r_0 (fm)	0.449(4)	0.447(5)	0.45(1)	


Conclusions

- ★ Substantial increase in number of ensembles (new lattice spacing, heavy sector, FSE)
- ★ Results in light sector so far appear consistent and indicate good scaling
- * Several interesting results and checks coming soon: e.g. lighter mass, Z's at all β
 - ★ Other observables: other talks


Topological charge D20.48

Finite size effects

