Forces between static-light mesons

Lattice 2010 – Villasimius, Sardinia, Italy

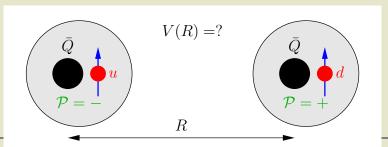
Marc Wagner

Humboldt-Universität zu Berlin, Institut für Physik
Theorie der Elementarteilchen – Phänomenologie/Gittereichtheorie
mcwagner@physik.hu-berlin.de

http://people.physik.hu-berlin.de/~mcwagner/ June 17, 2010

Introduction (1)

- Goal: compute the potential of (or equivalently the force between) two *B* mesons:
 - Treat the b quark in the static approximation.
 - Consider only pseudoscalar mesons ($j^{\mathcal{P}} = (1/2)^-$, denoted by S) and scalar mesons ($j^{\mathcal{P}} = (1/2)^+$, denoted by P_-), which are among the lightest static-light mesons.
 - Study the dependence of the mesonic potential V(R) on
 - * the light quark flavor u and/or d (isospin),
 - * the light quark spin (the static quark spin is irrelevant),
 - * the type of the meson S and/or P_- .



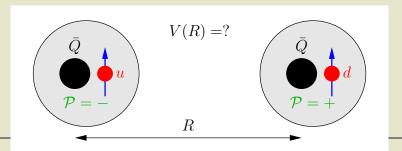
Introduction (2)

Motivation:

- First principles computation of a hadronic force.
- Until now it has only been studied in the quenched approximation.

[C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D ${\bf 60}$, 054012 (1999)]

[W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]



(Pseudo)scalar B mesons

- Symmetries and quantum numbers of static-light mesons:
 - Isospin: I=1/2, $I_z=\pm 1/2$, i.e. $B\equiv \bar{Q}u$ or $B\equiv \bar{Q}d$.
 - Parity: $\mathcal{P} = \pm$.
 - Rotations:
 - * Light cloud angular momentum j=1/2 (for S and P_{-}), $j_z=\pm 1/2$.
 - * Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
- Static-light meson creation operators:
 - $\bar{Q}\gamma_5q$ (pseudoscalar, i.e. S), $q\in\{u\,,\,d\}$,
 - $-\bar{Q}q$ (scalar, i.e. P_{-})

 $(j_z$ is not well-defined, when using these operators).

BB systems (1)

- Symmetries and quantum numbers of a pair of static-light mesons (separated along the z-axis):
 - Isospin: $I = 0, 1, I_z = -1, 0, +1$.
 - Rotations around the z-axis:
 - * Angular momentum of the light degrees of freedom $j_z = -1, 0, +1$.
 - * Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
 - Parity: $\mathcal{P} = \pm$.
 - If $j_z = 0$, reflection along the x-axis: $\mathcal{P}_x = \pm$.
 - Instead of using $j_z=\pm 1$ one can also label states by $|j_z|=1$, $\mathcal{P}_x=\pm .$
 - \rightarrow Label BB states by $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$.

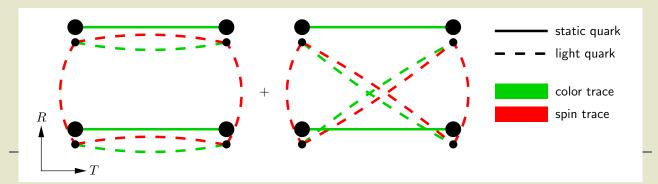
BB systems (2)

• To extract the potential(s) of a given sector (characterized by $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$), compute the temporal correlation function of the trial state

$$(C\Gamma)_{AB} \Big(\bar{Q}_C(-R/2)q_A^{(1)}(-R/2)\Big) \Big(\bar{Q}_C(+R/2)q_B^{(2)}(+R/2)\Big) |\Omega\rangle,$$

where

- $-\mathcal{C} = \gamma_0 \gamma_2$ (charge conjugation matrix),
- $-q^{(1)}q^{(2)} \in \{ud du , uu, dd, ud + du\}$ (isospin I, I_z),
- $-\Gamma$ is an arbitrary combination of γ matrices (spin $|j_z|$, parity \mathcal{P} , \mathcal{P}_x).



BB systems (3)

Wilson twisted mass action:

$$S_{\rm F}[\chi, \bar{\chi}, U] = a^4 \sum_x \bar{\chi}(x) \Big(D_{\rm W} + i \mu_{\rm q} \gamma_5 \tau_3 \Big) \chi(x) , \quad \psi(x) = e^{i \gamma_5 \tau_3 \omega/2} \chi(x).$$

- Symmetries of Wilson twisted mass lattice QCD compared to QCD:
 - SU(2) isospin breaks down to U(1): I_z is still a good quantum number, I is not.
 - Parity \mathcal{P} is replaced by $\mathcal{P}^{(tm)}$, which is parity combined with light flavor exchange.
 - Twisted mass BB sectors:

*
$$I_z = \pm 1$$
: $(I_z , |j_z| , \underbrace{\mathcal{P}^{(tm)}\mathcal{P}_x^{(tm)}}_{=\mathcal{P}\mathcal{P}_x})$,
* $I_z = 0$: $(I_z , |j_z| , \underbrace{\mathcal{P}^{(tm)}}_{=\mathcal{P}\times(2I-1)}, \underbrace{\mathcal{P}_x^{(tm)}}_{=\mathcal{P}_x\times(2I-1)})$.

 \rightarrow QCD sectors $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$ are pairwise combined.

BB systems (4)

• BB creation operators for $I_z = +1$: 16 operators of type

$$(C\Gamma)_{AB} \Big(\bar{Q}_C(-R/2) \chi_A^{(u)}(-R/2) \Big) \Big(\bar{Q}_C(+R/2) \chi_B^{(u)}(+R/2) \Big).$$

Γ twisted	$ j_z $, $\mathcal{P}^{(\mathrm{tm,light})}\mathcal{P}_x^{(\mathrm{tm,light})}$	Γ pseudo physical	$ j_z $, $\mathcal{P}^{(ext{light})}$, $\mathcal{P}^{(ext{light})}_x$
$ \begin{array}{c} \gamma_5 \\ \gamma_0 \gamma_5 \\ 1 \\ \gamma_0 \end{array} $	0, + 0, + 0, + 0, -	$\mp i$ $+\gamma_0\gamma_5$ $\mp i\gamma_5$ $+\gamma_0$	0, -, - 0, +, + 0, +, + 0, +, -
$ \begin{array}{c} \gamma_3 \\ \gamma_0 \gamma_3 \\ \gamma_3 \gamma_5 \\ \gamma_0 \gamma_3 \gamma_5 \end{array} $	0, + 0, + 0, - 0, +	$ \begin{array}{c} +\gamma_3\\ \mp i\gamma_0\gamma_3\gamma_5\\ +\gamma_3\gamma_5\\ \mp i\gamma_0\gamma_3 \end{array} $	0, -, - 0, +, + 0, -, + 0, -, -
$ \begin{array}{c} \gamma_1 \\ \gamma_0 \gamma_1 \\ \gamma_1 \gamma_5 \\ \gamma_0 \gamma_1 \gamma_5 \end{array} $	1, – 1, – 1, + 1, –	$+\gamma_1 \\ \mp i\gamma_0\gamma_1\gamma_5 \\ +\gamma_1\gamma_5 \\ \mp i\gamma_0\gamma_1$	1, -, + 1, +, - 1, -, - 1, -, +

BB systems (5)

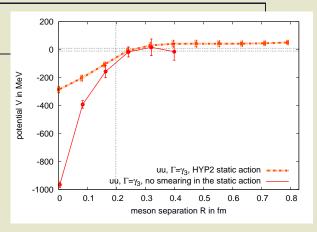
• BB creation operators for $I_z = 0$: 32 operators of type

$$(C\Gamma)_{AB} \Big(\bar{Q}_C(-R/2) \chi_A^{(u)}(-R/2) \Big) \Big(\bar{Q}_C(+R/2) \chi_B^{(d)}(+R/2) \Big) \pm (u \leftrightarrow d).$$

Γ twisted, \pm	$ j_z $, $\mathcal{P}^{(\mathrm{tm,light})}$, $\mathcal{P}_x^{(\mathrm{tm,light})}$	Γ pseudo physical, \pm	$ j_z $, I , $\mathcal{P}^{(\text{light})}$, $\mathcal{P}_x^{(\text{light})}$
γ_5 , $+$	0, +, +	$+\gamma_5$, $+$	0, 1, +, +
$\gamma_0\gamma_5$, +	0, +, +	$+i\gamma_0$, $-$	0, 0, -, -
1, -	0, -, +	+1,-	0, 0, +, -
γ_0 , $-$	0, +, +	$+i\gamma_0\gamma_5$, $+$	0, 1, +, +
γ_5 , $-$	0, +, -	$+\gamma_5$, $-$	0, 0, -, +
$\gamma_0\gamma_5$, $-$	0, +, -	$+i\gamma_0$, $+$	0, 1, +, -
1,+	0, -, -	+1,+	0, 1, -, -
γ_0 , $+$	0, +, -	$+i\gamma_0\gamma_5$, $-$	0, 0, -, +
γ_3 , $+$	1, -, -	$+i\gamma_3\gamma_5$, $-$	1, 0, +, +
$\gamma_0\gamma_3$, $+$	1, -, -	$+\gamma_0\gamma_3$, $+$	1, 1, -, -
$\gamma_3\gamma_5$, $-$	1, -, -	$+i\gamma_3$, $+$	1, 1, -, -
$\gamma_0\gamma_3\gamma_5$, —	1, +, -	$+\gamma_0\gamma_3\gamma_5$, $-$	1, 0, -, +

Simulation setup

- $\beta = 3.90$, $L^3 \times T = 24^3 \times 48$, $\mu = 0.0040$
 - \rightarrow lattice spacing $a \approx 0.079 \, \mathrm{fm}$
 - \rightarrow lattice extension $L \approx 1.90 \, \mathrm{fm}$
 - \rightarrow pion mass $m_{\rm PS} \approx 340\,{\rm MeV}$.
- Inversions/contractions on
 - -210 gauge configurations for light u/d quarks.
 - -18 gauge configurations for partially quenched s quarks.
- 12 *u* and 12 *d* inversions per gauge configuration (stochastic timeslice sources located on the same timeslice).
- APE smearing of spatial links and Gaussian smearing of light quark fields to "optimize" the ground state overlap of trial states.
- Wilson lines of static quarks are discretized by path ordered products of ordinary links (small separations) and HYP2 smeared links (large separations).

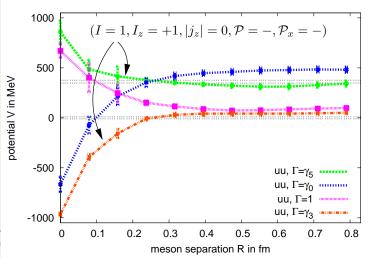


Discussion of results (1)

- Four "types of potentials":
 - Two attractive, two repulsive.
 - Two have asymptotic values, which are larger by $\approx 400 \, \text{MeV}$.
- There are cases, where two potentials with identical quantum numbers are completely different (i.e. of different type)

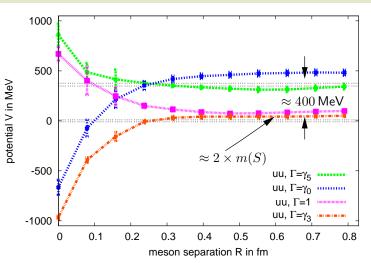
→ at least one of the corresponding trial states must have very small ground state overlap

→ physical understanding, i.e. interpretation of trial states needed.



Discussion of results (2)

- Expectation at large meson separation $R: V(R) \approx 2 \times \text{meson mass}$.
 - Potentials with smaller asymptotic value at $\approx 2 \times m(S)$.
 - $-m(P_{-})-m(S)\approx 400\,\mathrm{MeV}$: approximately the observed difference between different types of potentials.
 - \rightarrow Two types correspond to S-S potentials.
 - \rightarrow Two types correspond to S–P– potentials.
- Can this be understood in detail on the level of the used BB creation operators?



Discussion of results (3)

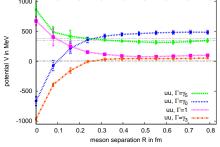
- Rotate the BB creation operators to the pseudo physical basis and express them in terms of static-light meson creation operators (use suitable spin and parity projectors for the light quarks).
 - Examples:

*
$$uu$$
, $\Gamma = \gamma_{5} \rightarrow \Gamma^{(ppb)} = -i \rightarrow \mathcal{P} = -$, $\mathcal{P}_{x} = -$:
$$(\mathcal{C}\gamma_{5})_{AB} \left(\bar{Q}_{C}(-R/2)\chi_{A}^{(u)}(-R/2) \right) \left(\bar{Q}_{C}(+R/2)\chi_{B}^{(u)}(+R/2) \right) =$$

$$= +i \left(S_{\uparrow}P_{\downarrow} - S_{\downarrow}P_{\uparrow} + P_{\uparrow}S_{\downarrow} - P_{\downarrow}S_{\uparrow} \right).$$
* uu , $\Gamma = \gamma_{3} \rightarrow \Gamma^{(ppb)} = \gamma_{3} \rightarrow \mathcal{P} = -$, $\mathcal{P}_{x} = -$:
$$(\mathcal{C}\gamma_{3})_{AB} \left(\bar{Q}_{C}(-R/2)\chi_{A}^{(u)}(-R/2) \right) \left(\bar{Q}_{C}(+R/2)\chi_{B}^{(u)}(+R/2) \right) =$$

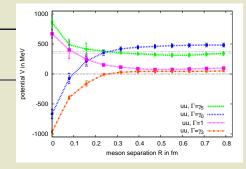
$$= -i \left(S_{\uparrow}S_{\downarrow} + S_{\downarrow}S_{\uparrow} - P_{\uparrow}P_{\downarrow} - P_{\downarrow}P_{\uparrow} \right).$$

 $-SS/SP_{-}$ content and asymptotic values in agreement for all 12+24 independent potentials \rightarrow asymptotic differences understood.



Discussion of results (4)

 Is there a general rule, about when a potential is repulsive and when attractive?



- -S-S potentials:
 - * $(I=0\;,\;s=0)$ or $(I=1\;,\;s=1)$, i.e. $I=s \rightarrow$ attractive $(I=0\;,\;s=1)$ or $(I=1\;,\;s=0)$, i.e. $I\neq s \rightarrow$ repulsive (s: combined angular momentum of the two mesons).
 - * Example: uu, $\Gamma = \gamma_3 \rightarrow \Gamma^{(\mathrm{ppb})} = \gamma_3 \rightarrow \mathcal{P} = -$, $\mathcal{P}_x = -$: $-i\Big(S_{\uparrow}S_{\downarrow} + S_{\downarrow}S_{\uparrow} P_{\uparrow}P_{\downarrow} P_{\downarrow}P_{\uparrow}\Big)$,

i.e. $I=1,\ s=1;$ the numerically obtained potential is attractive, i.e. in agreement with the above stated rule.

- * All 6 + 12 independent S-S potentials fulfill the rule.
- * Agreement with similar quenched lattice studies.

[C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)]

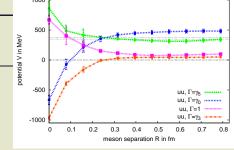
[W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]

Discussion of results (5)

- $-S-P_{-}$ potentials:
 - * Do not obey the above stated rule.
 * It can, however, easily be generalized by including parity, i.e. symmetry or antisymmetry under exchange of S and P_- : trial state symmetric under meson exchange \rightarrow attractive trial state antisymmetric under meson exchange \rightarrow repulsive

(meson exchange \equiv exchange of flavor, spin and parity).

- * Example: uu, $\Gamma = \gamma_0 \rightarrow \Gamma^{(\mathrm{ppb})} = \gamma_0 \rightarrow \mathcal{P} = +$, $\mathcal{P}_x = -$: $-\left(S_{\uparrow}P_{\downarrow} S_{\downarrow}P_{\uparrow} P_{\uparrow}S_{\downarrow} + P_{\downarrow}S_{\uparrow}\right)$,
 - i.e. I=1 (symmetric), s=0 (antisymmetric), antisymmetric with respect to $S \leftrightarrow P_-$; the numerically obtained potential is attractive, i.e. in agreement with the above stated general rule.
- * All 6 + 12 independent $S-P_-$ potentials (and all 6 + 12 independent S-S potentials) fulfill the general rule.



Summary, conclusions, future plans (1)

- Computation of BB potentials (arbitrary flavor, spin and parity) with light dynamical quarks ($m_{\rm PS} \approx 340\,{\rm MeV}$) in progress.
- Preliminary results promising:
 - Qualitative agreement with existing quenched results for S-S potentials.
 - Computation of S-P- potentials seems feasible (for some channels correlation matrices will be needed).
 - Clear statements about whether a potential of a given channel is attractive or repulsive.

Statistical accuracy needs to be improved:

- Exponentially decaying signal is quickly lost in noise
 - ightarrow BB potentials are extracted at rather small temporal separations
 - → contamination from excited states cannot be excluded at the moment.
- More inversions/contractions?
- Better methods?

Summary, conclusions, future plans (2)

• Further plans:

- Other β , $L^3 \times T$, μ values.
- Partially quenched computations, to obtain B_sB_s and/or B_sB potentials.
- Improve lattice meson potentials at small separations (where the suppression of UV fluctuations due to the lattice cutoff yields wrong results) with corresponding perturbative potentials.

Simulation setup (A)

• Fermionic action: Wilson twisted mass, $N_f = 2$ degenerate flavors,

$$S_{\mathrm{F}}[\chi, \bar{\chi}, U] = a^4 \sum_{x} \bar{\chi}(x) \Big(D_{\mathrm{W}} + i \mu_{\mathrm{q}} \gamma_5 \tau_3 \Big) \chi(x)$$

$$D_{\mathrm{W}} = \frac{1}{2} \Big(\gamma_{\mu} (\nabla_{\mu} + \nabla_{\mu}^*) - a \nabla_{\mu}^* \nabla_{\mu} \Big) + m_0$$

(m_0 : untwisted mass; μ_q : twisted mass; τ_3 : third Pauli matrix acting in flavor space).

• Relation between the physical basis ψ and the twisted basis χ (in the continuum):

$$\psi = \frac{1}{\sqrt{2}} \Big(\cos(\omega/2) + i \sin(\omega/2) \gamma_5 \tau_3 \Big) \chi$$

$$\bar{\psi} = \frac{1}{\sqrt{2}} \bar{\chi} \Big(\cos(\omega/2) + i \sin(\omega/2) \gamma_5 \tau_3 \Big)$$

(ω : twist angle; $\omega = \pi/2$: maximal twist).