Remarks on $N_f = 2 + 1 + 1$ LQCD at maximal twist

Roberto Frezzotti

University and INFN of Roma Tor Vergata

ETMC meeting - Glasgow - Sept. 29th-30th, 2008

Action for 2+1+1 MtmLQCD

$$S^{\text{latt}} = S_{YM} + \sigma^4 \sum_{x} [L_{Mtm}^{\ell} + L_{Mtm}^{h}]$$

with S_{YM} a suitable (chosen: Iwasaki) gluonic action and

a)
$$N_f=2$$
 light degenerate flavours ($\psi_\ell=(u,d)^\dagger$) with $\gamma_5\tau^3$ -twist

$$L'_{Mtm} = \bar{\psi}_{\ell} \left[\gamma \cdot \widetilde{\nabla} - i \gamma_5 \tau^3 (W + m_0) + \mu_{\ell} \right] \psi_{\ell} \,, \qquad W \equiv -r(a/2) \nabla^* \cdot \nabla$$

b)
$$N_f = 1 + 1$$
 flavours $(\psi_h = (c, s)^t)$ with $\gamma_5 \tau^1$ -twist

$$L_{\text{Mtm}}^{h} = \bar{\psi}_{h} [\gamma \cdot \widetilde{\nabla} - i\gamma_{5}\tau^{1}(W + m_{0}) + \mu_{h} + \epsilon_{h}\tau^{3}]\psi_{h}$$

Mass parameter renormalization:

 $m_0 = M_{\rm cr}$ for max. twist - O(a) part of m_0 tunable to reduce O(a^2) artifacts

$$\hat{m}_{ud} = Z_P^{-1} \mu_{\ell}$$

$$\hat{m}_s = Z_P^{-1}(\mu_h - Z_P Z_S^{-1} \epsilon_h), \qquad \hat{m}_C = Z_P^{-1}(\mu_h + Z_P Z_S^{-1} \epsilon_h)$$

Gauge links in $L_{
m Mtm}^{\ell,h}$ can be replaced with stout ones without affecting

symmetries and renormalization pattern...

Symanzik LEL and optimal $M_{ m cr}$ – I

Symanzix expansion of lattice operator vev's in terms of continuum ones

$$\begin{split} \langle \mathcal{O} \rangle^{MtmL} &= \langle \mathcal{O} \rangle^{cont} - \sigma \int d^4y \langle \mathcal{OL}_5^{Mtm}(y) \rangle^{cont} + \sigma \langle \Delta_1 \mathcal{O} \rangle^{cont} + \sigma^2 \langle \Delta_1 \mathcal{O} \rangle^{cont} + \\ &+ \frac{\sigma^2}{2} \int d^4y d^4z \langle \mathcal{OL}_5^{Mtm}(y) \mathcal{L}_5^{Mtm}(z) \rangle^{cont} - \sigma^2 \int d^4y \langle \mathcal{OL}_6^{Mtm}(y) \rangle^{cont} + \dots \end{split}$$

with matched renorm. cond. on the two sides above and

$$\begin{split} \mathcal{L}_{5}^{\textit{Mtm}} &= \mathcal{L}_{5}^{\ell} + \mathcal{L}_{5}^{h} \quad , \\ \mathcal{L}_{5}^{\ell} &= \eta_{1SW} \bar{\psi}_{\ell} \sigma \cdot F \gamma_{5} \tau^{3} \psi_{\ell} + (\eta_{10}^{\ell} \mu_{\ell}^{2} + \eta_{1b}^{\ell} \mu_{h}^{2} + \eta_{1c}^{\ell} \epsilon_{h}^{2}) \bar{\psi}_{\ell} i \gamma_{5} \tau^{3} \psi_{\ell} + \Lambda_{QCD}^{2} \delta_{1} \bar{\psi}_{\ell} i \gamma_{5} \tau^{3} \psi_{\ell}, \end{split}$$

$$\mathcal{L}_5^h = \eta_{1\text{SW}}\bar{\psi}_h\sigma \cdot F\gamma_5\tau^1\psi_h + (\eta_{1\text{o}}^h\mu_\ell^2 + \eta_{1\text{b}}^h\mu_h^2 + \eta_{1\text{c}}^h\epsilon_h^2)\bar{\psi}_hi\gamma_5\tau^1\psi_h + \Lambda_{\text{QCD}}^2\delta_1\bar{\psi}_hi\gamma_5\tau^1\psi_h$$

The structure of \mathcal{L}_5^{Mtm} follows from (spurionic) symmetries (see JHEP 0410 (2004) 070)

$$H(4)$$
, charge conjugation, $P \times \mathcal{D}_{d} \times (\mu_{\ell} \to -\mu_{\ell}) \times (\mu_{h} \to -\mu_{h}) \times (\epsilon_{h} \to -\epsilon_{h})$
Vector^{3 ℓ} , Axial^{2 ℓ} _{ℓ /2} × ($\mu_{\ell} \to -\mu_{\ell}$), Axial^{1 ℓ} _{ℓ /2} × ($\mu_{\ell} \to -\mu_{\ell}$)
Vector^{1 h} _{ℓ /2} × ($\epsilon_{h} \to -\epsilon_{h}$), Axial^{2 h} _{ℓ /2} × ($\mu_{h} \to -\mu_{h}$), Axial^{3 h} _{ℓ /2} × ($\mu_{h} \to -\mu_{h}$) × ($\epsilon_{h} \to -\epsilon_{h}$)

Terms containing $\Lambda_{\rm QCD}^2$ are needed to describe N.P. O(a) artifacts in the determination of $M_{\rm cr}$ (its value is part of the specification of $\langle - \rangle^{\rm MtmL}$)

Symanzik LEL and optimal $M_{ m cr}$ – II

Generic estimate of $M_{\rm cr}$: the Symanzik expansion of $\langle {\cal O} \rangle^{\rm MtmL}$ contains

powers of
$$[\xi_{\pi} m_{\pi}^{-2} \Lambda_{\mathrm{QCD}}^{-1}]_{\mu_{\ell},(\mu_{h},\epsilon_{h})}$$
 with

$$\xi_{\pi}|_{\mu_{\ell},(\mu_{h},\epsilon_{h})} \equiv \langle \Omega | \textit{a}\mathcal{L}_{5}^{\textit{Mtm}} | \pi \rangle|_{\mu_{\ell},(\mu_{h},\epsilon_{h})}^{cont} = \langle \Omega | \textit{a}\mathcal{L}_{5}^{\ell} | \pi \rangle|_{\mu_{\ell},(\mu_{h},\epsilon_{h})}^{cont}$$

- last equality above follows from vector^{2ℓ,1ℓ}-invariance of continuum theory;
- $\bullet \quad \mathcal{L}_{5}^{\ell} = \eta_{1SW} \bar{\psi}_{\ell} \sigma \cdot F \gamma_{5} \tau^{3} \psi_{\ell} + (\eta_{1\sigma}^{\ell} \mu_{\ell}^{2} + \eta_{1b}^{\ell} \mu_{h}^{2} + \eta_{1c}^{\ell} \epsilon_{h}^{2}) \bar{\psi}_{\ell} i \gamma_{5} \tau^{3} \psi_{\ell} + \Lambda_{QCD}^{2} \delta_{1} \bar{\psi}_{\ell} i \gamma_{5} \tau^{3} \psi_{\ell}$

As in the $N_f=2$ theory (see Frezzotti-Martinelli-Papinutto-Rossi'05), also here

$$C_{VP}^{\ell\ell}(\textbf{X}_0) \equiv \textbf{a}^3 \sum_{\vec{x}} \langle V_0^{2\ell}(\textbf{x}) P^{1\ell}(\textbf{0}) \rangle^{\text{MtmL}} = 0 \quad \Rightarrow \quad \xi_\pi|_{\mu_\ell, (\mu_h, \varepsilon_h)} = O(\textbf{a}\mu_\ell) \Lambda_{QCD}^3 + \dots$$

Define the optimal critical mass $m_0 = M_{\rm cr}^{\rm opt}[\mu_\ell, (\mu_h, \epsilon_h)]$ by

$$|m_{\mathrm{PCAC}}| = |\partial_{x_0} C_{VP}^{\ell\ell}(x_0)/C_{PP}^{\ell\ell}(x_0)|_{m_0,\mu_\ell,(\mu_b,\epsilon_b)} = 0$$
 (in practice $\ll \mu_\ell$)

 ${\cal M}_{
m cr}^{
m opt}$ (in the sense of FMPR'05 – and also of χ PT: Aoki-Bår'04 and Sharpe-Wu'04) depends significantly on (μ_h,ϵ_h) – however the mild μ_ℓ –dependence is treated

m_0 -value for evaluation of Z's

For practical reasons: mass-independent renormalization schemes (RIMOM, SF)

 \Rightarrow must work at small \rightarrow zero mass parameters, e.g. with

$$[\mu_{\ell}, (\mu_h, \epsilon_h)] = [\mu, (\mu, 0)] \rightarrow [0, (0, 0)]$$
 and $m_0 \rightarrow M_{cr}$ (generic).

How to choose m_0 if the Z's "feel" χ SSB-enhanced (e.g. $\sim a/m_\pi^2$) cutoff effects?

A) work at $[\mu, (\mu, 0)]$, μ small and $m_0 = M_{\rm cr}^{\rm opt}[\mu_\ell, (\mu_h, \epsilon_h)] \Rightarrow$

$$\xi_{\pi}|_{\mu,(\mu,0)}^{m_0} = O(\alpha\mu_h^2, \alpha\epsilon_h^2)\Lambda_{\rm QCD}^2 + O(\alpha\mu_\ell)\Lambda_{\rm QCD}^3 \quad \gg \quad O(\alpha\mu)\Lambda_{\rm QCD}^3$$

 m_0 already known, $m_{PCAC}|_{\mu,(\mu,0)}^{m_0} \neq 0$: any χ SSB-enhanced cutoff effects in Z's?

B) work at $[\mu, (\mu, 0)]$, μ small and $m_0' = M_{\rm cr}^{\rm opt}[\mu, (\mu, 0)] \Rightarrow$

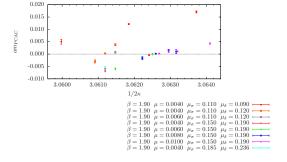
$$\xi_{\pi}|_{\mu,(\mu,0)}^{m_0} = O(a\mu)\Lambda_{QCD}^3$$
 by construction,

extra tuning to find m_0' : $m_{PCAC}|_{\mu,(\mu,0)}^{m_0'} \simeq 0$! Can show: $m_0' - m_0 \sim a$

Exploit suppression of χ SSB-enhanced artifacts at small L (SF) or large q (RIMOM)

Choice A): m_{PCAC} at $[\mu_{\ell}, (\mu_{h}, \epsilon_{h})]$ and $[\mu, (\mu, 0)]$

Theory & data at $\beta=1.9 \rightarrow \Delta(aM_{\rm cr}^{\rm opt}) \sim 0.40 \Delta(a^2\epsilon_h^2) - 0.71 \Delta(a^2\mu_h^2)$ With choice $m_0=M_{\rm cr}^{\rm opt}[\mu_\ell,(\mu_h,\epsilon_h)]:$ expect $\Delta(aM_{\rm cr}^{\rm opt}) \simeq -0.0015$ i.e. $am_{\rm PCAC}|_{\sim 0,(\sim 0,0)}^{m_0} \simeq 0.0075$ or (bare) $m_{\rm PCAC}|_{\sim 0,(\sim 0,0)}^{m_0} \simeq 16$ MeV To get an idea of χ SSB vs FS effects at L=1 fm: $(L^22Bm_{\rm PCAC})^{1/2} \simeq \sqrt{2}$



$\det(D_{ ext{Mtm}}^h)$ and the case of $\mu_h^2 < \epsilon_h^2$

 $\mu_h^2 > \epsilon_h^2 \implies \det(D_{\text{Mtm}}^h) > 0$ on each gauge configuration, for any V.

 $\mu_h^2 < \epsilon_h^2$: $\det(\mathcal{D}_{\rm Mtm}^h)$ has fixed sign on the relevant U-ensembles , as we find

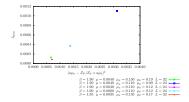
- median of the spectral gap of $Q_h \equiv \gamma_5 \tau^3 D_{\mathrm{Mtm}}^h = Q_h^\dagger$ (though EO-precond.) well > 0 and nearly proportional to $\mu_h Z_P Z_S^{-1} \epsilon_h = Z_P \hat{m}_s$ (Gregorio's plot)
- width of the spectral gap of Q_h seems to decrease with $1/\sqrt{V}$ (G.'s plots)

This makes plausible the hypothesis that in infinite volume Q_h^2 has zero (positive) eigenvalue density for $\alpha < \bar{\alpha}$ ($\alpha = \bar{\alpha}$) — at least for sufficiently small α Under this hypothesis and in infinite volume: $\bar{\alpha} = (\mu_h - Z_P Z_S^{-1} \epsilon_h)^2 + O(\alpha^2)$ renormalization of eigenvalue density (and gap) understood and related to that of quark mass(es), up to $O(\alpha^2)$ \Leftrightarrow consistent with G.'s plot

Proof parallels that in hep-lat/0512021 (Del Debbio *et al.*) (γ_5 -hermiticity of D_m and individual valence quarks there $\rightarrow \gamma_5 \tau^3$ -hermiticity of $D_{
m Mtm}^h$ and pairs of valence quarks here)

The case of $\mu_h^2 < \epsilon_h^2$ on finite lattices

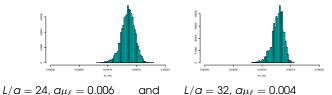
Spectral gap of Q_h^2 vs $(\mu_h - Z_P Z_S^{-1} \epsilon_h)^2$ (but EO-preconditioned)



Hypothesis on the spectral density: true in the continuum; can and should be checked (for the unpreconditioned Q_h) on our lattices (large V, small a)

The case of $\mu_h^2 < \epsilon_h^2$ on finite lattices – cont'd

 $\beta=$ 1.9, $(a\mu_h,a\epsilon_h)=(0.15,0.19)$: distribution of Q_h^2 (but EO-preconditioned)



Width of the Q_h^2 spectral gap distribution: check whether it scales with a/\sqrt{V}

Philosophy: if in our small a, large V simulations, by numerical checks of this type, we find good evidence that $\det(D^h_{\mathrm{Mtm}})$ has constant sign on the relevant (for PHMC importance sampling) U-ensembles, then we also understand why: because we work close enough to the continuum and $V=\infty$ limits. \Rightarrow self-consistent picture supporting the safety of our MC simulations at $\epsilon_h^2 > \mu_h^2$.

Unitary vs. mixed action setup

Possibility of using OS fermions for the valence strange and charm quarks: avoid s-c mixings, retain unitarity in the continuum limit.

Easy matching of s and c bare masses (requires knowledge of Z_P/Z_S):

$$m_s = (\mu_h - Z_P/Z_S\epsilon_h)$$
 and $m_c = (mu_h + Z_P/Z_S\epsilon_h)$

No anomalously large cutoff effects seen in $N_f=2$ observables (other than m_{-}^{OS}): see e.g. B_K . Indeed no such problems expected for masses and matrix elements involving only one-particle states.

