The 1/2 versus 3/2 puzzle

ETM collaboration meeting, Glasgow

Marc Wagner

Humboldt University Berlin

mcwagner@physik.hu-berlin.de

http://people.physik.hu-berlin.de/~mcwagner/

September 29, 2008

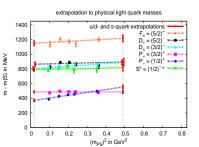
Outline

- Heavy-light mesons.
- 1/2 versus 3/2 puzzle:
 - Experimental side.
 - Theory side.
 - Possible explanations to resolve the puzzle.
- Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$.
- Conclusions.

Heavy-light mesons

- Heavy-light meson: a meson made from a heavy quark (b, c) and a light quark (u, d, s), e.g. $B = \{\bar{b}u, \bar{b}d\}$, $B_s = \bar{b}s$, $D = \{\bar{c}u, \bar{c}d\}$, $D_s = \bar{c}s$.
- Static limit, i.e. $m_b, m_c \to \infty$:
 - No interactions involving the static quark spin.
 - Classify states according to parity \mathcal{P} and total angular momentum of the light cloud j.
- m_b, m_c finite, but heavy:
 - Classify states according to parity \mathcal{P} and total angular momentum J.

static-light mass differences as functions of $(m_{\rm PS})^2$



$j^{\mathcal{P}}$	$J^{\mathcal{P}}$
	$0^{-} \equiv H$ $1^{-} \equiv H^{*}$
$(1/2)^+ \equiv P$	$ \begin{array}{ccccc} 0^{+} & \equiv & H_{0}^{*} & \equiv & H_{0}^{1/2} \\ 1^{+} & \equiv & H_{1}^{*} & \equiv & H_{1}^{1/2} \end{array} $
$(3/2)^+ \equiv P_+$	$0^{+} \equiv H_{0}^{*} \equiv H_{0}^{1/2}$ $1^{+} \equiv H_{1}^{*} \equiv H_{1}^{1/2}$ $1^{+} \equiv H_{1} \equiv H_{1}^{3/2}$ $2^{+} \equiv H_{2}^{*} \equiv H_{2}^{3/2}$

September 29, 2008

1/2 versus 3/2: experimental side

- Consider the semileptonic decay $B \to X_c l \nu$.
- Experiments, which have studied this decay: ALEPH, BaBar, BELLE, CDF, DELPHI, DØ.
- What is X_c ?
 - $-\approx 75\%~D$ and D^* , i.e. S wave states (agreement with theory).
 - $-\approx 10\%~D_1^{3/2}$ and $D_2^{3/2}$, i.e. j=3/2~P wave states (agreement with theory).
 - For the remaining $\approx 15\%$ the situation is not clear:
 - * A natural candidate would be $D_0^{1/2}$ and $D_1^{1/2}$, i.e. $j=1/2\ P$ wave states.
 - * This would imply $\Gamma(B\to D_{0,1}^{1/2}\,l\,\nu)>\Gamma(B\to D_{1,2}^{3/2}\,l\,\nu)$, which is in "conflict" with theory.
 - * This "conflict" between experiment and theory is called the "1/2 versus 3/2 puzzle".

1/2 versus 3/2: theory side (1)

• Static limit $(m_b, m_c \to \infty)$ with both b and c quark at rest:

$$\langle D_0^{1/2} | \bar{c} \gamma_5 \gamma_j D_k b | B \rangle = -i g_{jk} \Big(m(D_0^{1/2}) - m(B) \Big) \tau_{1/2}$$

$$\langle D_2^{3/2} | \bar{c} \gamma_5 \gamma_j D_k b | B \rangle = +i \sqrt{3} \epsilon_{jk} \Big(m(D_2^{3/2}) - m(B) \Big) \tau_{3/2}$$

and

$$\frac{\Gamma(B \to D_{0,1}^{1/2} l \nu)}{\Gamma(B \to D_{1,2}^{2/2} l \nu)} = \frac{|\tau_{1/2}|^2}{|\tau_{3/2}|^2}.$$

 $(\tau_{1/2}, \, \tau_{3/2}$: Isgur-Wise form factors).

1/2 versus 3/2: theory side (2)

- Phenomenological models:
 - $-|\tau_{1/2}|<|\tau_{3/2}|$, which is in "conflict" with experiment.
- OPE:
 - Uraltsev sum rule:

$$\sum_{n} |\tau_{3/2}^{(n)}|^2 - |\tau_{1/2}^{(n)}|^2 = \frac{1}{4}$$

$$(au_{1/2} \equiv au_{1/2}^{(0)} \text{ and } au_{3/2} \equiv au_{3/2}^{(0)}).$$

 From experience with sum rules one would expect approximate saturation from the ground states, i.e.

$$|\tau_{3/2}^{(0)}|^2 - |\tau_{1/2}^{(0)}|^2 \approx \frac{1}{4},$$

which also implies $|\tau_{1/2}| < |\tau_{3/2}|$, which is in "conflict" with experiment.

1/2 versus 3/2: possible explanations

• Experiment:

- The signal for the remaining 15% of X_c is rather vague; therefore, only a small part might be $D_{0,1}^{1/2}$.

• Phenomenological models:

Models might give a wrong answer.

• OPE:

- Sum rules hold in the static limit and might change significantly for finite quark masses.
- Sum rules might not be saturated by the ground states.
- A lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ could shed some light on this puzzle.

Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (1)

Simulation setup:

- $-N_f=2$, $24^3 \times 48$ lattice, $\beta=3.9$, $\mu=0.0040$ (i.e. $m_{\rm PS}\approx 300\,{
 m MeV}$).
- Static-light meson trial states:
 - * $|\tilde{S}\rangle = \bar{Q}\gamma_5\psi|\Omega\rangle$: trial state for $|B\rangle$.
 - * $|\tilde{P}_{-}\rangle = \bar{Q}\psi|\Omega\rangle$: trial state for $|D_{0}^{1/2}\rangle$.
 - * $|\tilde{P}_{+}\rangle = \bar{Q}(\gamma_{x}x \gamma_{y}y)\psi|\Omega\rangle$: trial state for $|D_{2}^{3/2}\rangle$.
 - * Gaussian smeared light quark operators ($N_{\rm Gauss}=30$, $\kappa_{\rm Gauss}=0.5$) with APE smeared spatial links ($N_{\rm APE}=10$, $\alpha_{\rm APE}=0.5$).
 - * Separation between static antiquark and light quark operators: r = 3.
- HYP2 static action.
- Preliminary results with ≈ 100 gauge configurations.

Lattice computation of $au_{1/2}$ and $au_{3/2}$ (2)

"Effective form factors",

$$\tau_{1/2,\text{effective}}(T_0 - T_1, T_1 - T_2) = \frac{N(\tilde{P}_-) N(\tilde{S}) \langle \tilde{P}_-(T_0) | (\bar{Q}\gamma_5\gamma_3D_3Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_-) - m(\tilde{S})) \langle \tilde{P}_-(T_0) | \tilde{P}_-(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle}$$

$$\tau_{3/2,\text{effective}}(T_0 - T_1, T_1 - T_2) = \frac{1}{6} \frac{N(\tilde{P}_+) N(\tilde{S}) \langle \tilde{P}_+(T_0) | (\bar{Q}\gamma_5(\gamma_1D_1 - \gamma_2D_2)Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_+) - m(\tilde{S})) \langle \tilde{P}_+(T_0) | \tilde{P}_+(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle} :$$

- -N(X): norm of state $|X\rangle$.
- -m(X): mass of state $|X\rangle$.
- Three-point functions $(T_0, T_1 \text{ and } T_2)$.
- Two-point functions (T_0 and T_1 or T_1 and T_2).

$$\bullet \ \tau_{1/2} \ = \ \lim_{T_0 - T_1 \,, \, T_1 - T_2 \to \infty} \tau_{1/2, \text{effective}} \quad , \quad \tau_{3/2} \ = \ \lim_{T_0 - T_1 \,, \, T_1 - T_2 \to \infty} \tau_{3/2, \text{effective}} .$$

Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (3)

• Static-light meson trial states in the physical basis:

$$|\tilde{S}\rangle = \bar{Q}\gamma_5\chi|\Omega\rangle$$
 , $|\tilde{P}_-\rangle = \bar{Q}\chi|\Omega\rangle$.

• Twist rotation:

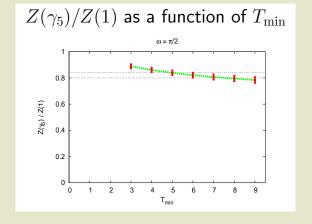
$$|\tilde{S}\rangle = \frac{1}{\sqrt{2}} \left(\mathbf{Z}(\gamma_5) |S\rangle + i \mathbf{Z}(1) |P_-\rangle \right) |\tilde{P}_-\rangle = \frac{1}{\sqrt{2}} \left(\mathbf{Z}(1) |P_-\rangle + i \mathbf{Z}(\gamma_5) |S\rangle \right).$$

• Determine $Z(\gamma_5)/Z(1)$ by requiring

$$\langle \tilde{P}_{-}(T)|\tilde{S}(0)\rangle = 0$$

(cf. my "Trento talk" about extracting K and D meson masses).

• Analogously for $|P_+\rangle$ and $|D_-\rangle$.



Lattice computation of $au_{1/2}$ and $au_{3/2}$ (4)

•
$$\tau_{1/2,\text{effective}}(T_0 - T_1, T_1 - T_2) =$$

$$= \left| \frac{N(\tilde{P}_-) N(\tilde{S}) \langle \tilde{P}_-(T_0) | (\bar{Q}\gamma_5\gamma_3D_3Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_-) - m(\tilde{S})) \langle \tilde{P}_-(T_0) | \tilde{P}_-(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle} \right| , \dots$$

• Two-point functions:

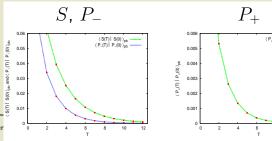
$$\langle \tilde{S}(T_1)|\tilde{S}(T_2)\rangle = \frac{1}{2} \Big(Z(\gamma_5)^2 \langle S(T_1)|S(T_2)\rangle + Z(1)^2 \langle P_-(T_1)|P_-(T_2)\rangle + iZ(\gamma_5)Z(1) \Big(\langle S(T_1)|P_-(T_2)\rangle - \langle P_-(T_1)|S(T_2)\rangle \Big) \Big).$$

• Determine the norm of $|\tilde{S}\rangle$, $N(\tilde{S})$, by performing a χ^2 minimizing fit with

$$f(T) = N(\tilde{S})^2 e^{-m(S)T}$$

to $\langle \tilde{S}(T) | \tilde{S}(0) \rangle$.

Analogously for the others.



Lattice computation of $\tau_{1/2}$...

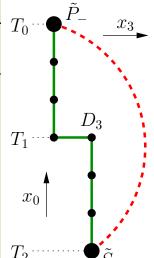
•
$$\tau_{1/2,\text{effective}}(T_0 - T_1, T_1 - T_2) =$$

$$= \left| \frac{N(\tilde{P}_-) N(\tilde{S}) \langle \tilde{P}_-(T_0) | (\bar{Q}\gamma_5\gamma_3D_3Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_-) - m(\tilde{S})) \langle \tilde{P}_-(T_0) | \tilde{P}_-(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle} \right|$$

• Three-point functions:

$$\begin{split} \langle \tilde{P}_{-}(T_{0}) | (\bar{Q}\gamma_{5}\gamma_{3}D_{3}Q)(T_{1}) | \tilde{S}(T_{2}) \rangle &= \\ &= \frac{1}{2} \Big(Z(\gamma_{5})Z(1) \Big(\langle P_{-}(T_{0}) | \dots | S(T_{2}) \rangle + \langle S(T_{0}) | \dots | P_{-}(T_{2}) \rangle \Big) \\ &+ i \Big(Z(1)^{2} \langle P_{-}(T_{0}) | \dots | P_{-}(T_{2}) \rangle - Z(\gamma_{5})^{2} \langle S(T_{0}) | \dots | S(T_{2}) \rangle \Big) \Big). \end{split}$$

- Analogously for the other three-point functions.
- Mass differences $m(P_{-}) m(S)$ and $m(P_{+}) m(S)$ from the "ETMC static-light spectrum paper".



Lattice computation of $au_{1/2}$ and $au_{3/2}$ (6)

- $\tau_{1/2, \mathrm{effective}}(T_0 T_1, T_1 T_2)$ and $\tau_{3/2, \mathrm{effective}}(T_0 T_1, T_1 T_2)$ exhibit nice plateaus due to "optimized" trial states $|\tilde{S}\rangle$, $|\tilde{P}_-\rangle$ and $|\tilde{P}_+\rangle$.
- $T_0 T_2 = 8$:

$$-\tau_{1/2}=0.32$$
, $\tau_{3/2}=0.47$.

$$-(\tau_{3/2})^2 - (\tau_{1/2})^2 = 0.11.$$

• $T_0 - T_2 = 10$:

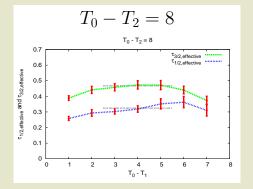
$$-\tau_{1/2}=0.29$$
, $\tau_{3/2}=0.54$.

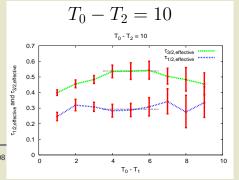
$$-(\tau_{3/2})^2 - (\tau_{1/2})^2 = 0.20.$$

- $\tau_{3/2} > \tau_{1/2}$, i.e. theoretical expectation confirmed.
- "Consistent" with Uraltsev sum rule:

$$\sum_{n} |\tau_{3/2}^{(n)}|^2 - |\tau_{1/2}^{(n)}|^2 = \frac{1}{4}.$$

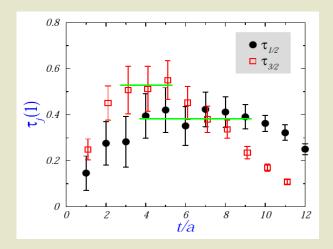
 $au_{1/2}$ and $au_{3/2}$ as functions of T_0-T_1

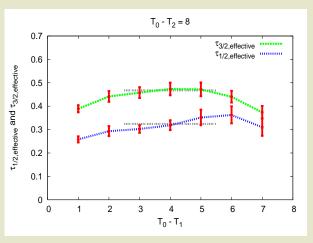




Lattice computation of $au_{1/2}$ and $au_{3/2}$ (7)

- Comparison with the only existing lattice study (quenched, exploratory):
 - D. Becirevic *et al.*, "Lattice measurement of the Isgur-Wise functions $\tau_{1/2}$ and $\tau_{3/2}$," Phys. Lett. B **609**, 298 (2005) [arXiv:hep-lat/0406031].
 - $-16^3 \times 40$ lattice, $m_{\rm sea} = \infty$, $m_{\rm PS} = 800 \, {\rm MeV}$.
 - $-\tau_{1/2}=0.38(4)$, $\tau_{3/2}=0.53(8)$.





Conclusions

- $au_{1/2}$ and $au_{3/2}$ have been computed on dynamical ETMC gauge field configurations.
- Preliminary results indicate that in the static limit

$$\Gamma(B \to D_{0,1}^{1/2} \, l \, \nu) \quad < \quad \Gamma(B \to D_{1,2}^{3/2} \, l \, \nu)$$

(as expected from OPE and phenomenological models).

- "To do list":
 - Improve statistics.
 - Consider different light quark masses to extrapolate to u/d masses.
 - Perform the continuum limit.
 - Compute HQET $1/m_Q$ corrections.

I would like to thank Benoit Blossier, Vladimir Galkin and Olivier Pène for valuable discussions.