B_K from N_f=2

(Work in progress)

A project of ... INFN Frascati – ROME 1 -2- 3 ...

Petros Dimopoulos

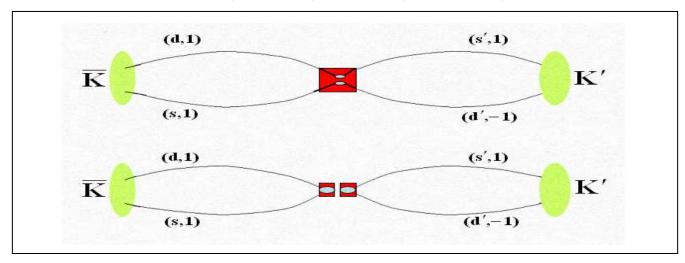
Set-up for B_K

(Frezzotti-Rossi, hep-lat/0407002)

Consider the *Mixed action*:

$$S^{L} = S_{YM} + S_{q,sea}^{Mm} + S_{qf,val}^{OS} + S_{gh,val}^{OS}$$
with:
$$S_{qf,val}^{OS} = \sum_{f=1}^{N_{val}} \overline{q_f} \Big[\gamma \cdot \widetilde{\nabla} - i \gamma_5 W_{cr}(r_f) + \mu_f \Big] q_f \qquad (q_f \ a \ \underline{single} \ flavour \ f)$$
and:
$$W_{cr}(r_f) = -r_f \frac{a}{2} \nabla^* \nabla + M_{cr}(r_f; r_{sea}^2)$$

Work in the *Partial-Quenched* set-up:


$$(q_1 = d, q_2 = d', q_3 = s, q_4 = s')$$
 $M_0^{sea} = M_0^f = M_{cr}(1;1^2)$
 $|r_{sea}^{u,d}| = |r_f| = 1$
 $\mu_{sea}^u = \mu_{sea}^d = \mu_d = \mu_{d'}$
 $r_{sea}^u = -r_{sea}^d = r_d = -r_{d'} = 1$
 $\mu_s = \mu_{s'}$
 $r_s = r_{s'} = 1$

Calculate the three-point correlator:

$$C_{KQK}(z_0 - x_0, z_0 - y_0) = \sum_{\bar{x}, \bar{y}, \bar{z}} \left\langle (\bar{d}' \gamma_5 s')(x) \ Q_{VV+AA}^{\Delta S=2}(z) \ (\bar{d} \gamma_5 s)(y) \right\rangle$$

with the 4-fermion operator:

$$Q_{VV+AA}^{\Delta S=2} = 2\{ (\overline{s} \gamma_{\mu} d) (\overline{s}' \gamma_{\mu} d') + (\overline{s} \gamma_{\mu} \gamma_{5} d) (\overline{s}' \gamma_{\mu} \gamma_{5} d') + (\overline{s} \gamma_{\mu} d') (\overline{s}' \gamma_{\mu} d) + (\overline{s} \gamma_{\mu} \gamma_{5} d') (\overline{s}' \gamma_{\mu} \gamma_{5} d) \}$$

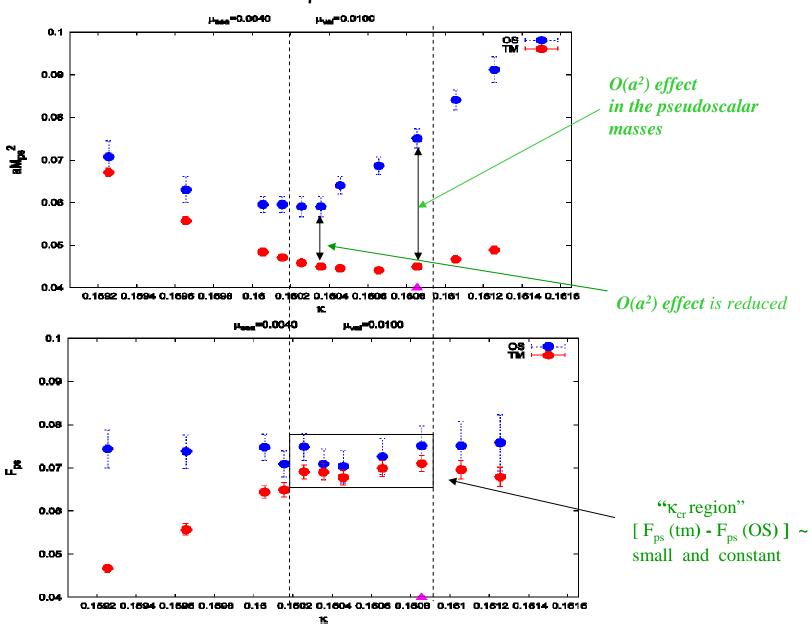
$$\phi_{K'} = \overline{d}' \gamma_5 s'$$
 $-r_{d'} = r_{s'} = 1$ (tm-like)

$$\phi_{K} = \overline{d} \gamma_{5} s$$
 $r_{d} = r_{s} = 1$ (OS-like)

GAIN: no mixing in the renormalization of the 4-fermion operator + O(a) improvement

Produce the OS-like Kaon contribution in *two* possible ways:

$$\mathbf{M}_{\mathrm{cr}}^{\mathrm{os}} = \mathbf{M}_{\mathrm{cr}}^{\mathrm{opt}}$$

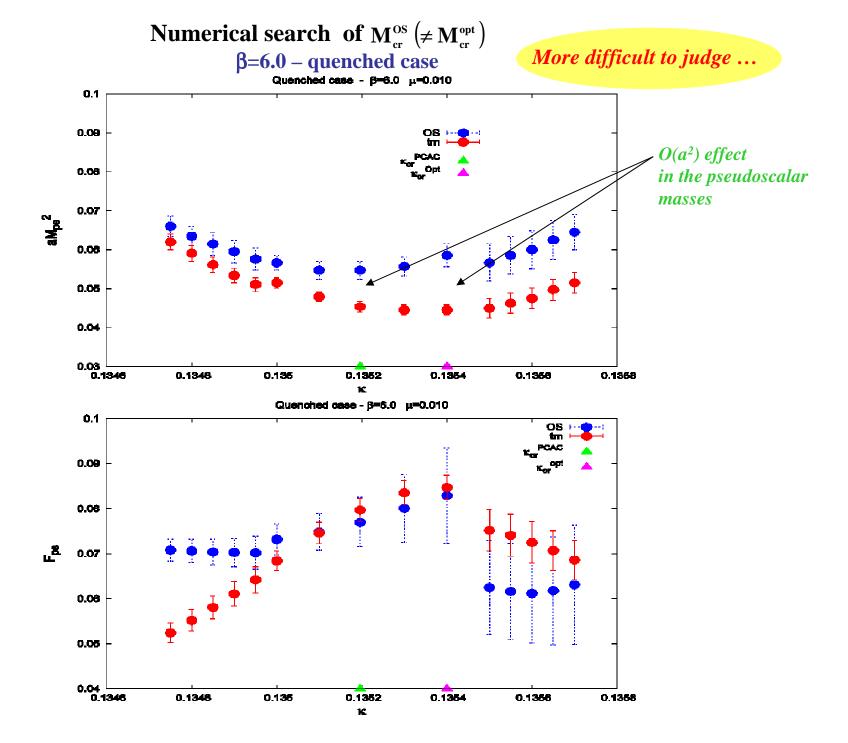

- It guarantees the O(a)-improvement
- It leads to different $O(a^2)$ effects on the masses of tm and OS-like Kaons (Unphysical $O(a^2)$ energy transfer in $K' \leftrightarrow \overline{K}$ in B_K calculation)

$$\mathbf{M}_{\mathrm{cr}}^{\mathrm{OS}} \neq \mathbf{M}_{\mathrm{cr}}^{\mathrm{opt}}$$

- Different (hopefully *smaller*) $O(a^2)$ mass-splitting between $m_K^{2 \text{ OS}}$ and $m_K^{2 \text{ tm}}$
- It, still, guarantees the O(a)-improvement
- Tune $\kappa_{cr}(OS)$ in order to *minimize* the mass splitting: $(m_K^{2 \text{ OS}} m_K^{2 \text{ tm}})$

(See the ToV presentation at the Cyprus ETMC meeting ...)

Numerical search of \mathbf{M}_{cr}^{os} ($\neq \mathbf{M}_{cr}^{opt}$) β =3.90



similar results for β =4.05 ...

We conclude that determining a useful $M_{\rm cr}^{os} \left(\neq M_{\rm cr}^{opt} \right)$ is feasible for the N_f =2 case.

But, this is a *numerical fact* and surely not guaranteed in general.

As an exercise, let's have a look at the quenched case...

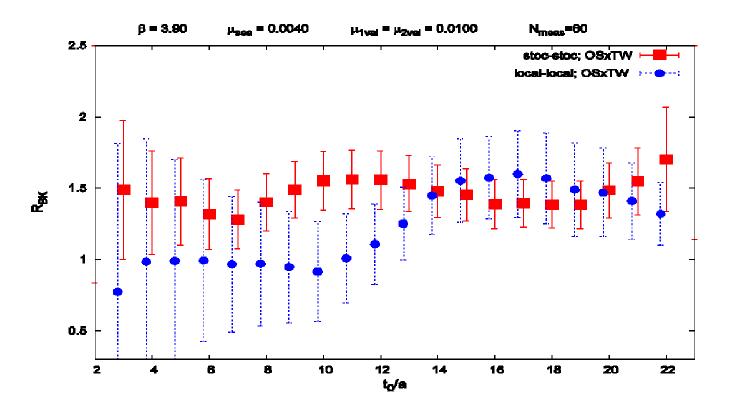
Until now, we only have runs with

$$\mathbf{M}_{\mathrm{cr}}^{\mathrm{os}} = \mathbf{M}_{\mathrm{cr}}^{\mathrm{opt}}$$

$\mathbf{B}_{\mathbf{K}}$ calculation

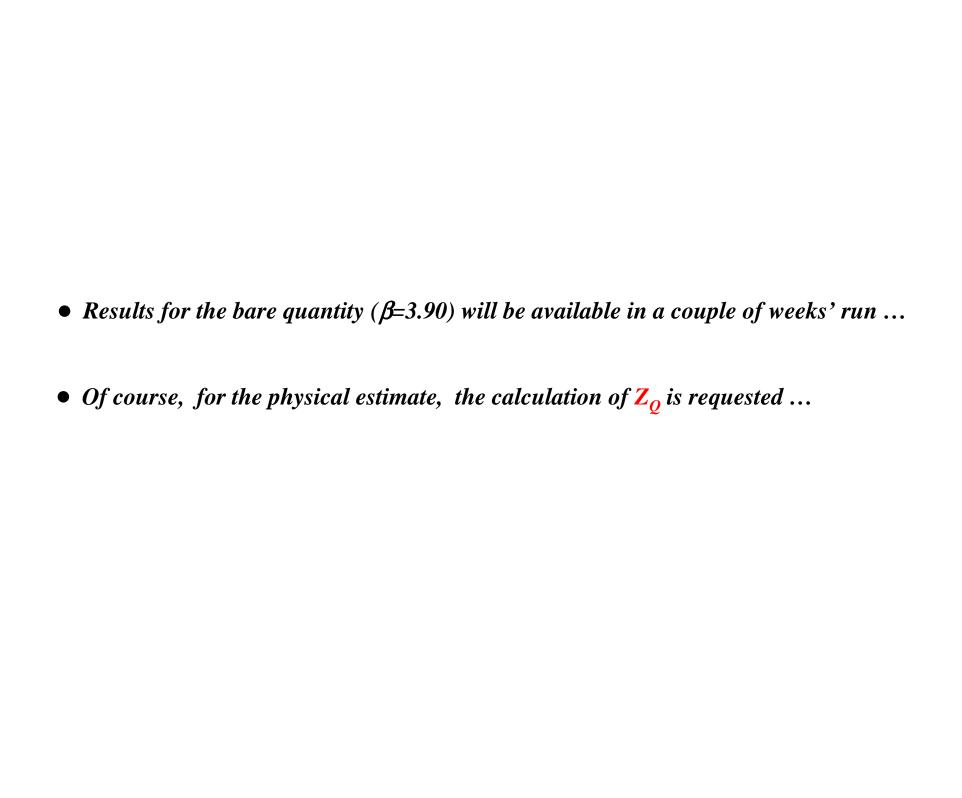
• Local-local calculation

- Choose and fix a couple of time slices x₀ such as to isolate the Kaon (first Kaon source)
- Locate the 4-fermion operator at $z_0=0$


$$R_{B_K} = \frac{C_{K'QK}^{(3)}(z_0 - x_0^{fixed}, z_0 - y_0)}{\frac{8}{3}C_{K'}^{(2)}(z_0 - x_0^{fixed})C_K^{(2)}(z_0 - y_0)} \Big|_{z_0 = 0} \xrightarrow{T/2 << y_0 << T} B_K$$

• Stochastic-stochastic calculation

- Locate the two stochastic sources at fixed time slices, x_0 and y_0
- Free moving in time, z₀, the 4-fermion operator


$$R_{B_K}^{stoc} = \frac{C_{K'QK}^{(3)}(z_0 - x_0^{fixed}, z_0 - y_0^{fixed})}{\frac{8}{3}C_{K'}^{(2)}(z_0 - x_0^{fixed})C_K^{(2)}(z_0 - y_0^{fixed})} \xrightarrow{x_0 << z_0 << y_0} B_K$$

stoc-stoc vs. local-local set-up

 $\sigma_{local-local} \approx 2 \sigma_{stoc-stoc}$

In the final statistics, ~ 400 confs and keeping into account autocorrelations, we expect $\sigma_{BK(bare)} \approx 3\text{-}5\%$

