Humboldt-Universität zu Berlin Institut für Physik

Statistical Methods of Data Analysis Problem Set #6

Due Date: Thursday, January 6, 2010, during the lecture

Problem 1:

In a particle decay one of the decay products is emitted under an angle θ with respect to the z axis in some coordinate system. The decay angle distribution is predicted to follow the PDF

$$f(\cos\theta;\lambda) = \frac{1}{2}(1+\lambda\cos\theta)$$

A measurement has resulted in the following values of $\cos \theta$:

-0.612	-0.235	0.919	-0.735	0.328
0.928	0.975	-0.827	0.104	0.442
0.203	0.267	0.462	0.025	0.243
-0.822	0.363	-0.126	-0.481	-0.994

Estimate the parameter λ and its uncertainty using the maximum likelihood method.

Tip: Carry out the minimization required for the solution numerically. Use e.g. the ROOT class TF1, which contains the method TF1::GetMinimumX() for finding local minima.

Problem 2:

Consider the exponential PDF $f(x; \lambda) = \lambda \exp[-\lambda x]$.

- i) Derive the maximum likelihood (ML) estimator $\hat{\lambda}$ of the parameter λ . What is the bias of $\hat{\lambda}$?
- ii) Substitute $\lambda = 1/\tau$ in the exponential PDF. Compare value and bias of the ML estimator $\hat{\tau}$ with $\hat{\lambda}$.

Problem 3:

The binomial random variable y can take on the value 1 with probability P and 0 with probability 1 - P.

- i) Prove that the mean and the variance of y are equal to P and P(1-P) respectively.
- ii) Find the maximum likelihood estimator \hat{P} for a random sample of binomial random variables $\vec{y} = (y_1, \ldots, y_n)$.
- iii) Find the variance of this estimator.

Problem 4:

Generate and plot random numbers using ROOT:

- i) Uniformly distributed on a circle.
- ii) Uniformly distributed on the surface of a ball (Tip: use the TGraph2D class to plot these numbers).

Note: write some comments into your ROOT macro and hand it in with the solutions.

(5 points)

(10 points)

(10 points)

(5 points)