Statistical Methods of Data Analysis Problem Set \#6

Due Date: Thursday, January 6, 2010, during the lecture

Problem 1:

In a particle decay one of the decay products is emitted under an angle θ with respect to the z axis in some coordinate system. The decay angle distribution is predicted to follow the PDF

$$
f(\cos \theta ; \lambda)=\frac{1}{2}(1+\lambda \cos \theta)
$$

A measurement has resulted in the following values of $\cos \theta$:

-0.612	-0.235	0.919	-0.735	0.328
0.928	0.975	-0.827	0.104	0.442
0.203	0.267	0.462	0.025	0.243
-0.822	0.363	-0.126	-0.481	-0.994

Estimate the parameter λ and its uncertainty using the maximum likelihood method.
Tip: Carry out the minimization required for the solution numerically. Use e.g. the ROOT class TF1, which contains the method TF1: : GetMinimumX() for finding local minima.

Problem 2:

Consider the exponential PDF $f(x ; \lambda)=\lambda \exp [-\lambda x]$.
i) Derive the maximum likelihood (ML) estimator $\hat{\lambda}$ of the parameter λ. What is the bias of $\hat{\lambda}$?
ii) Substitute $\lambda=1 / \tau$ in the exponential PDF. Compare value and bias of the ML estimator $\hat{\tau}$ with $\hat{\lambda}$.

Problem 3:

The binomial random variable y can take on the value 1 with probability P and 0 with probability $1-P$.
i) Prove that the mean and the variance of y are equal to P and $P(1-P)$ respectively.
ii) Find the maximum likelihood estimator \hat{P} for a random sample of binomial random variables $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$.
iii) Find the variance of this estimator.

Problem 4:

Generate and plot random numbers using ROOT:
i) Uniformly distributed on a circle.
ii) Uniformly distributed on the surface of a ball (Tip: use the TGraph2D class to plot these numbers).

Note: write some comments into your ROOT macro and hand it in with the solutions.

