Statistical Methods of Data Analysis Problem Set \#5

Due Date: Thursday, December 9, 2010, during the lecture

Problem 1:

For Gaussian distributions the square root of the sample variance s can be corrected with a factor $c(n)$ such that $c(n) E[s]=\sigma$, i.e. $c(n) s$ is an unbiased estimator of σ. Use the the fact that the estimator

$$
\sqrt{\hat{z}}=\sqrt{\sum_{i} \frac{\left(x_{i}-\bar{x}\right)^{2}}{\sigma^{2}}}
$$

follows a χ distribution with $n-1$ degrees of freedom, where the PDF of the χ distribution with n degrees of freedom is given by

$$
f(z ; n)=\frac{2^{1-\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} z^{n-1} \exp \left[-\frac{z^{2}}{2}\right]
$$

to show that $c(n)$ is given by

$$
c(n)=\sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} .
$$

Which sample size is required for the correction to be below 5% ?

Problem 2:

Determine the number π using Monte Carlo methods:
i) Write a computer program that uses the hit-or-miss Monte Carlo method to determine the value of π from the area of a circle. How many iterations are required to achieve a precision of 1% ? Which empirical precision does your algorithm achive after 10^{6} iterations?
ii) Suppose that the floor of your living room is made of parallel strips, each with the same width w. You drop a toothpick with length $l \leq w$. Show that the probability for the toothpick to lie across the line between two strips is given by $P=2 l /(w \pi)$. Write a computer program to determine the value of π that makes use of this process.

Problem 3:

Use Monte Carlo methods to solve the following integral:

$$
\int_{-1}^{1} \mathrm{~d} x f(x) \text { with } f(x)=\exp [-|x|]
$$

i) Write a program to generate random numbers distributed according to $f(x)$ using the transformation method.
ii) Write a program to solve the integral using rejection sampling.
iii) Write a program to solve the integral by evaluating the value of the integrand for random values of $x \in[-1,1]$.

