Statistical Methods of Data Analysis
 Problem Set \#3

Due Date: Thursday, November 11, 2010, during the lecture

Problem 1:

You measure two angles α and β five times each and you get the following measurements.

$$
\begin{array}{llllll}
\alpha\left[^{[}\right] & 35 & 31 & 33 & 32 & 34 \\
\beta\left[^{\circ}\right] & 50 & 55 & 51 & 53 & 51
\end{array}
$$

1) Evaluate the best value of the angle $\gamma=180^{\circ}-\alpha-\beta$ and its standard deviation supposing that α and β are independent.
2) Evaluate the effect on the standard deviation of γ of a correlation between α and β supposing that α and β are not independent.
3) Prove that $\sigma_{\gamma} \leq\left|\frac{\partial \gamma}{\partial \alpha}\right| \sigma_{\alpha}+\left|\frac{\partial \gamma}{\partial \beta}\right| \sigma_{\beta}$.

Tip: exploit the Schwarz inequality $\left|\sigma_{x y}\right| \leq \sigma_{x} \sigma_{y}$.

Problem 2:

1) Calculate the expectation value $E[x]$ and the variance $V[x]$ of:
(i) a random variable x uniformly distributed in the interval $[a, b]$. Consider the variable $y=\sin (x)$. What is its PDF $g(y)$ in the case of $[a, b]=[-\pi, \pi]$?
(ii) an exponentially distributed random variable with parameter λ.
2) The distribution of the decay time (in arbitrary units) of a certain particle is displayed in the histogram DecayTimes in the file ProblemSet3.root that you can download from the course web page. Evaluate the mean lifetime of this particle.
Tip: The decay time of an unstable particle is described by an exponential distribution. The mean lifetime is the inverse of the parameter λ. In ROOT you can define the single-parameter function [0] $* \exp (-[0] * x)$ where [0] represent the parameter λ.

The Weibull distribution is often used in industry to describe the lifetime of products. The PDF of the Weibull distribution is given by

$$
f(x ; \alpha, \beta)= \begin{cases}\alpha \beta x^{\beta-1} \exp \left[-\alpha x^{\beta}\right] & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

1) Calculate the expectation value $E[x]$ and the variance $V[x]$ of $f(x ; \alpha, \beta)$.

Tip: The Gamma function is defined as $\Gamma(x)=\int_{0}^{\infty} \mathrm{d} t t^{x-1} e^{-t}$.
2) Assume that lifetime (in hours) of an emergency backup battery follows a Weibull distribution with $\alpha=0.1$ and $\beta=0.5$.
(i) Plot the PDF given these parameters.
(ii) Calculate the mean lifetime of the batteries.
(iii) What is the probability that such a battery will last more than 300 hours?

Problem 4:

Let r and ϕ be two invertible functions of the two random variables x and y with PDF

$$
\begin{equation*}
f(x, y)=\frac{1}{2 \pi} \mathrm{e}^{-\frac{x^{2}+y^{2}}{2}} \tag{1}
\end{equation*}
$$

What is the form of the PDF $g(r, \phi)$ for $x=r \cos (\phi)$ and $y=r \sin (\phi)$?

