Statistical Methods of Data Analysis Problem Set #3

Due Date: Thursday, November 11, 2010, during the lecture

Problem 1:

(10 points)

You measure two angles α and β five times each and you get the following measurements.

- 1) Evaluate the best value of the angle $\gamma = 180^{\circ} \alpha \beta$ and its standard deviation supposing that α and β are independent.
- 2) Evaluate the effect on the standard deviation of γ of a correlation between α and β supposing that α and β are not independent.
- 3) Prove that $\sigma_{\gamma} \leq \left| \frac{\partial \gamma}{\partial \alpha} \right| \sigma_{\alpha} + \left| \frac{\partial \gamma}{\partial \beta} \right| \sigma_{\beta}$. Tip: exploit the Schwarz inequality $|\sigma_{xy}| \leq \sigma_x \sigma_y$.

Problem 2:

parameter λ .

(12 points)

- 1) Calculate the expectation value E[x] and the variance V[x] of:
 - (i) a random variable x uniformly distributed in the interval [a,b]. Consider the variable $y = \sin(x)$. What is its PDF g(y) in the case of $[a,b] = [-\pi,\pi]$?
 - (ii) an exponentially distributed random variable with parameter λ .
- 2) The distribution of the decay time (in arbitrary units) of a certain particle is displayed in the histogram DecayTimes in the file ProblemSet3.root that you can download from the course web page. Evaluate the mean lifetime of this particle. Tip: The decay time of an unstable particle is described by an exponential distribution. The mean lifetime is the inverse of the parameter λ. In ROOT you can define the single-parameter function [0]*exp(-[0]*x) where [0] represent the

Problem 3:

The Weibull distribution is often used in industry to describe the lifetime of products. The PDF of the Weibull distribution is given by

$$f(x;\alpha,\beta) = \begin{cases} \alpha\beta x^{\beta-1} \exp[-\alpha x^{\beta}] & \text{for } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- 1) Calculate the expectation value E[x] and the variance V[x] of $f(x; \alpha, \beta)$. Tip: The Gamma function is defined as $\Gamma(x) = \int_0^\infty dt \, t^{x-1} e^{-t}$.
- 2) Assume that lifetime (in hours) of an emergency backup battery follows a Weibull distribution with $\alpha = 0.1$ and $\beta = 0.5$.
 - (i) Plot the PDF given these parameters.
 - (ii) Calculate the mean lifetime of the batteries.
 - (iii) What is the probability that such a battery will last more than 300 hours?

Problem 4:

(8 points)

Let r and ϕ be two invertible functions of the two random variables x and y with PDF

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}}$$
(1)

What is the form of the PDF $g(r,\phi)$ for $x = r\cos(\phi)$ and $y = r\sin(\phi)$?