Statistical Methods of Data Analysis

Ulrich Husemann

Humboldt-Universität zu Berlin Winter Semester 2010/2011

Results of Exercises

Distribution of points

Grade scale renormalized to 95% of full number of points = 218.5

Fisher Discriminant

TMVA Fisher discriminant:

Fisher x: -0.067

• Fisher y: -0.067

• Fisher offset: +0.005

Statistical Methods of Data Analysis (P23.1.2b), HU Berlin, WS 2010/2011, Lecture #15

Neural Networks

[http://www.willamette.edu/~gorr/classes/cs449/brain.html]

[TMVA Users Guide]

Artificial Neural Networks

- Artificial neural network (ANN):
 - Used in many branches of data analysis (imaging, finance, ...)
 - Particle physics: classification of events as signal/background
- Typical ANN in particle physics: multilayer perceptron
 - Input layer: most sensitive kinematic variables (momenta, ...)
 - Hidden layer(s): linear combination of outputs of previous layer
 - Output: typically single discriminating variable, e.g. ∈[0,1]

Output of each neuron j: $y_j = f\left(\sum_i w_{ij}x_i - T_j\right)$ with w_{ij} weight, T_j threshold, sigmoid function for turn-on: $f(x) = \frac{1}{1 + e^{-x}}$

Statistical Methods of Data Analysis (P23.1.2b), HU Berlin, WS 2010/2011, Lecture #15

-

Transfer Functions

Artificial Neural Networks

- ANN training: determine weights w_{ij} and threshold T_j
 - Feed ANN with simulated data (signal & background)
 - Iterative optimization of weights & thresholds by "error back-propagation" → minimize differences between actual and desired output (1 for signal, 0 for background)
- ANNs are very powerful but "black box"
 - Input variables (& correlations) must be well-understood
 - Danger of over-training → ANN "snaps on" particular features of training sample

Statistical Methods of Data Analysis (P23.1.2b), HU Berlin, WS 2010/2011, Lecture #15

There's More ...

7

- Recent comprehensive book on statistical learning:
 - T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer (2009)
 - http://www-stat.stanford.edu/~tibs/ElemStatLearn/
- Extensions of ROOT
 - TMVA: multivariate analysis classes
 - RooFit: classes for PDFs and fitting
 - RooStats: classes for statistical data analysis
- Standard programming language for statisticians: R
 - http://www.r-project.org/
 - Many external packages available