

Astr

Christian Spiering DESY

Gamma-2008, Heidelberg 2008

V Astr

The unified spectrum of neutrinos

In this talk: only optical underwater/ice detection @ TeV/PeV

Underwater/Ice: optical telescopes

Spiering Gamma-08

The Baikal Neutrino Telescope

Spiering Gamma-08

ANTARES

Atmospheric Neutrinos

Spiering Gamma-08

Atmospheric Neutrinos

Atmospheric Neutrinos

Elevation

Astr

Spiering Gamma-08

sinθ

Amanda: energy spectrum of atmospheric neutrinos (4-year data)

Astr

Spiering Gamma-08 Spectrum up to >100 TeV !

NESTOR & NEMO

Second Generation Telescopes

IceCube Baikal-GVD KM3NeT

Spiering Gamma-08

Completion by 2011.

IceCube 50% installed and taking data

Will have 1 km³×year by 2009

Entering cubic kilometer era

Spiering Gamma-08

Amanda as a low-energy subdetector of IceCube

MC for livetime: IC22 281 days, 142 days together with AMANDA

Spiering Gamma-08

DeepCore: a new low energy subdetector for IceCube

- 6 strings each with 60 PM, spaced by ~10 m
- better veto from top
- located in best ice (below 2100 m exceptionally clear!)
- uses IceCube technology
- considerably better performance at low energy
- Can look upward !!

See poster of O. Scholz

Gigaton Volume Detector, GVD

Sparse instrumentation:

Spiering Gamma-08

Gigaton Volume Detector, GVD

Presently under test: GVD prototype string

Spiering Gamma-08

Time schedule

a Configuration? Site? Technology?

Challenge for the next 1.5 years (TDR) !

b

С

Basic barameters OF THE OFFICIENCY OFFICIENCE OFFICIENCE OFFICIENCY OFFICIENCE OFFICIENC

Spiering Gamma-08

Spiering Gamma-08

Effective v area @ 100 TeV: a ~ 4 m² Amanda/Antares class □ ~100 m² km² class **Angular resolution:** □ ~ 4° Baikal NT200 □ ~ 2° Amanda $\Box < 1^{\circ}$ IceCube □ ~ 0.3° Antares (KM3NeT)

Point source sensitivity (5σ):
AMANDA, ANTARES: ~ 3·10⁻¹⁰ v / (cm² s) above 1 TeV
IceCube, KM3NeT < 10⁻¹¹ v / (cm² s) above 1 TeV

Results and Expectations

High energy astrophysical sources
 (Supernova burst)

Nothing on particle physics, dark matter, charged cosmic rays, ...

Spiering Gamma-08

Skymap AMANDA and Baikal

V Astr

5 yr max significance $3.74\sigma \rightarrow 2.8\sigma$

No significant excess

Spiering

Gamma-08

Amanda Flux Limits for E⁻² Point sources

Preliminary

Stacking of AGN (Amanda)

Spiering Gamma-0<u>8</u>

IceCube 22 strings, 2007

Astr

Spiering Gamma-08 Equatorial sky map (scrambled in RA!) for 281 days of IC22, from a binned analysis optimized for $E^{-2} - E^{-3}$.

Note: there are 2 analyses, 1 binned, 1 unbinned. Limits/fluxes will be published for the more sensitive one. Unblinding soon.

Flux limits for point sources

V Astr

Signal predictions: galactic sources

- Predictions on firmer ground than for extragalactic sources
 - Shell-type SNR
 - Pulsar Wind Nebula
 - Micro-quasars
 - Compact Binary Systems
- Many papers in the last 2 years, e.g.:
 - Vissani 2006
 - DiStefano 2006
 - Lipari 2006
 - Kappes, Hinton, Stegmann, Aharonian 2007
 - Gabici, Aharonian 2007
 - Torres, Halzen 2007
 - Halzen, Kappes, Murchadha 2008
 - Taylor et al., 2008

Conclusion: Cubic kilometer detectors will likely just scrape the detection region

Spiering Gamma-08

γ from molecular Clouds: smoking gun for hadronic acceleration ?

Astr

Aharonian et al., Nature 439 (2006), 695

Expected v flux from galactic point sources, example: RXJ 1713-3946

Assume $\pi^0 \rightarrow \gamma$ and calculate related $\pi^{\pm} \rightarrow \gamma$

Neutrino Event Rates (II)

γ-ray sources with observed cut-off (KM3NeT, 5 years)

			E > 1TeV		E > 5TeV	
	Туре	Dia. [º]	src	bck	src	bck
- Vela X	PWN	0.8	9 – 23	23	5 – 15	4.6
- RX J1713.7-3946	SNR	1.3	7 – 14	21	2.6 – 6.7	8.2
- RX J0852.0-4622	SNR	2.0	7 – 15	104	1.9 – 6.5	21
- HESS J1825-137	PWN	0.3	5 – 10	9.3	2.2 – 5.2	1.8
- Crab Nebula	PWN	< 0.1	4.0 – 7.6	5.2	1.1 – 2.7	1.1
- HESS J1303-631	NCP	0.3	0.8 – 2.3	11	0.1 – 0.5	2.1
- LS 5039* (INFC)	Binary	<0.1	0.3 – 0.7	2.5	0.1 - 0.3	0.5

NCP: no counterparts at other wavelength

* no γ-ray absorption

- 23 further γ-ray sources investigated:
 - All γ -ray spectra show no cut-offs (but limited statistics)
 - Event numbers mostly below 1 2 in 5 years

Christian Stegmann, Galactic Neutrinos, ICRC 2007

Spiering Gamma-08

Galactic Latitude (deg)

Spiering Gamma-08

MGRO J1908+06: the first Pevatron ?

- Assumed E⁻² with Milagro normalization (MGRO J1908+06 index= 2.1)
- v spectrum cutoff @ 300 TeV

Astr

Halzen, Kappes, O'Murchadha: arXiv:0803.0314

V Astr

Simulated Neutrino Skymaps IC80 (5 years)

Spiering Gamma-08

Stacking all 6 Milagro sources, 5 years

Assumption: cut-off at 300 TeV

- p-value close to 10⁻⁴ after 5 years
- Optimal threshold @ 30 TeV (determined by loss of signal events)

Stacking all 6 Milagro sources, 5 years

Conclusions for galactic sources

Optimum threshold for typical analyses with a km³ detector 5-30 TeV

Desirable sensitivity > 5 × IceCube

- But: don't forget SN shells in first months after explosion !
- Always to the rescue: hidden sources (but they also eventually should be visible at low photon energies !)

Spiering Gamma-08

MPR and WB bound

Limit on diffuse extraterrestrial fluxes

Assumptions:

Flux sensitivity for point sources

- Isotropically distributed sources
- Similar v luminosity for all sources
- dN/dE ~ E⁻² for all sources and cut-off only at >100 Tev
- Euclidian Universe, uniform source density

Spiering Gamma-08

Spiering Gamma-08

Simple arguments suggest that 1 km³ has a fair – but not too large! – discovery chance for single sources.

Increase point source sensitivity

- by area > 1 km²
- by better pointing
- by reducing the BG of atmospheric neutrinos

Not excluded that first a diffuse excess will be discovered.

Spiering Gamma-08

Multi-Messenger Approaches

Spiering Gamma-08

Multi-Messenger Analyses

Steady sources

Astr

Gamma-08

 Reducing trial factors by source selection based on X-ray/gamma information

Transient sources

- Being triggered by GRB satellite data
- Optical follow-up of neutrinos doublets
- Target of Opportunity programs (like AMANDA/MAGIC)
- Compile continuous gamma time series
- Identify flare states
- SN burst trigger to optical astronomers

Coincidences with GRB

V Astr

Optical follow-up for GRB/SN

M.Kowalski, A. Mohr, astro-ph/0701618

Spiering Gamma-08

Flares of AGN: ES 1959+650 ?

Neutrino Target of Opportunity (NToO)*

27th September to 27th November 2006 Five alerts sent

Result: 3 observations No coincidence ...

VERITAS

Astr

Long-term gamma-ray observations used for light-curves studies

MAGIC NToO – follow-up neutrino alerts plus long term γ observ.

H.E.S.S. CANGAROO small overlap in the visible sky

* M. Ackermann, E. Bernardini

V Astr

Spiering

Gamma-08

Understanding transient gamma signals

Compiling gamma time series, e.g. M. Tluczykont et al., JoP 60 (2007) 318

Defining flare periods e.g. E.Resconi et al., JoP 60 (2007) 223

Supernova in IceCube

Supernova in IceCube

tremendous technological progress over last decade

- no positive detection yet, but already testing (optimistic) bounds
- □ IceCube reaches 1 km³ × year by early 2009
- entering region with fair discovery potential.
 Most interesting period 2009-2013 !
- KM3NeT should be substantially more sensitive than IceCube

IceCube is ready for the next Supernova

Spiering Gamma-08

Discovery potential for neutrino point sources

V Astr

Spiering Gamma-08

