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Detection methodsDetection methods
DIRECT DETECTION SEARCHES

Observe scattering of χ’s off nuclei
in low-background
environments

NEUTRINO INDIRECT SEARCHES

Search for neutrinos produced in χχ 
annihilations in the core of 
gravitational dips,
e.g.the center 
of Sun or Earth, 
where χ’s 
get “trapped”

ANTIMATTER INDIRECT SEARCHES

Disentangle antimatter
produced in χχ
annihilations in the 
galactic halo from
standard antimatter
Sources.

GAMMA RAY INDIRECT SEARCHES

Observe gamma rays produced by χχ
annihilations
regions of
high DM 
density.

μ
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Direct detectionDirect detection
• WIMP + nucleus → WIMP + 

nucleus
• Measure recoil energy
• Suppress background 

enough to be sensitive to a 
signal (if possible zero)

• Search for annual 
modulation of rate

• Search for directional 
signature

• WIMP + nucleus → WIMP + 
nucleus

• Measure recoil energy
• Suppress background 

enough to be sensitive to a 
signal (if possible zero)

• Search for annual 
modulation of rate

• Search for directional 
signature

Smoking gun signatures due to 
motion of Earth  through halo:
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Maturity.
Rapid 
progress

Stage 4: 
- Understand remaining
background.100 kg scale

- Determine best method
for ton-scale detectors
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LHC

results of LHC 
may modify
this picture !
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• Diffusion of charged particles. Looking for excess of 
antiparticles. 

• Best current detector is Pamela. Next big step would be 
AMS.
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Example: the „HEAT Positron Excess“Example: the „HEAT Positron Excess“

Better data
mandatory.

Wait first
PAMELA data.

Then AMS !!
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• Gamma rays can be searched for with Imaging Air 
Cherenkov Telescopes (IACTs) or GLAST. 

• Signal depends strongly on the halo profile or local 
cluster factors
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EGRET dataEGRET data

De Boer
halo origin
65 GeV

Mannheim & Elsässer
Subtract galactic/halo component
Extragalactic origin
520 GeV

Now: Agile
Wait for GLAST !



D. Elsässer & K. Mannheim, Phys.Rev.Lett. 94:171302, 2005

Extragalactic gamma backgroundExtragalactic gamma background
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• Energy spectrum not well described by neutralino- or KK-annihilation (Mx

=14 TeV, MKK=5TeV)

• Sagittarus Dwarf Galaxy: astrophysical component small                    
set interesting limits on cross section (private comm. G. Heinzelmann)

• Energy spectrum not well described by neutralino- or KK-annihilation (Mx

=14 TeV, MKK=5TeV)

• Sagittarus Dwarf Galaxy: astrophysical component small                    
set interesting limits on cross section (private comm. G. Heinzelmann)

From D.Horns et al.



M87 spectrum for WIMP annihilationM87 spectrum for WIMP annihilation

From D. Elsässer



Large ~50 dish IACT array of 2-3 different sizes

CTA – Cherenkov Telescope
Array

CTA – Cherenkov Telescope
Array

> 1 km



CTA
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nuclear
reactiondetector

neutrino

standard 
detection 
scheme

muon



Installation
1996-2000

677 optical modules
at 19 strings

AMANDAAMANDA



AMANDA-II: 2000-2004 (1001 live days)  4282 ν  from Northern hemisphere
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Year2000 2001 2002 2003

May June July

Flux of
TeV photons

(arb. units)
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νν

WHIPPLE

Arrival time of 
neutrinos from the
direction of the AGN 
ES1959+650

A curious coincidence



IceTop

InIce

Air shower detector
80 pairs of ice 
Cherenkov tanks
Threshold ~ 300 TeV

Goal of 80 strings of 60 
optical modules each

17 m between modules
125 m string separation

2004-2005 : 1 string

2005-2006: 8 strings

AMANDA-II
19 strings
677 modules

2006-2007:
13 strings deployed

IceCube
Current configuration
- 22 strings
- 52 surface tanks

Completion by 2011.
2007/08: add 14 to 18 
strings and tank stations

1450m

2450m



IceTop

IceCube
AMANDA-II
19 strings
677 modules

IceCube

1450m

2450m



AMANDA now
operating as part
of IceCube
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AMANDA as low energy
subdetector of IceCube

AMANDA as low energy
subdetector of IceCube

IceCubeIceCube
thresholdthreshold 100 100 GeVGeV

IceCubeIceCube withwith
Amanda       30 Amanda       30 GeVGeV

Amanda Amanda withoutwithout
IceCubeIceCube 50 50 GeVGeV

Advantage Advantage forfor
WIMP WIMP detectiondetection



5400
IceCube

only

8200 
incl.

AMANDA

Preliminary

Atmos. νμ
per 200 days
(trigger level,

IC22+AMANDA)

Gross, Tluczykont, Ha, Rott, DeYoung, 
Resconi, & Wikström, ICRC 2007

30 GeV!

Effect on 22-string detector



A new low energy subdetector
for IceCube ?

A new low energy subdetector
for IceCube ?• 6 strings each with 40 PM, spaced 

by 10 m

• better veto from top

• located in best ice  (below 2100 m 
exceptionally clear)

• uses IceCube technology

• considerably better performance at 
low energy

• Physics targets

• Solar WIMPs

• Look upward (contained events)

AMANDA

new core?

Scatt. Coeff.



FP6 Design Study

oonstruction + operation

construction + operation

operation

operation

construction

operation

operation

operat

NT200, NT200+

ANTARES 

AMANDA

IceCube

KM3NeT

GVD

c + o

R&D KM3 NESTOR, NEMO 

design study construction + operation

operat

?

2011200920072005 2006 20162014201220102008 20152013

now High Energy Neutrino Telescopes



Neutralino Capture in the SunNeutralino Capture in the Sun

SunSun

DetectorDetector

EarthEarth



Neutralino Capture in the EarthNeutralino Capture in the Earth

ν
χ

χ + χ → b + b
C + μ + νμ

Look for neutrinos
from the center of
the Earth.



Capture by Sun and EarthCapture by Sun and Earth

•Capture in Sun
• Mostly on Hydrogen

• Both spin-independent 
and spin- dependent 
scattering

•Capture in Earth
• Mostly on Iron

• Essentially only spin-
independent scattering

• Resonant scattering when 
mass matches element in 
Earth

•Capture in Sun
• Mostly on Hydrogen

• Both spin-independent 
and spin- dependent 
scattering

•Capture in Earth
• Mostly on Iron

• Essentially only spin-
independent scattering

• Resonant scattering when 
mass matches element in 
Earth

Figure from Jungman, Kamionkowski and Griest



Amanda Analysis: 
Earth WIMPs 1999 as example

Amanda Analysis: 
Earth WIMPs 1999 as example

1,1

Start with               9101,1 ⋅

level in 99 data
events at trigger

Background rejection
optimization = f (mass, decay mode)

2101,1 ⋅

1101,1 ⋅

6101,1 ⋅

5101,1 ⋅

4101,1 ⋅

3101,1 ⋅

8101,1 ⋅

9101,1 ⋅

7101,1 ⋅

Angular distribution

Aeff
LIMIT



Muon flux limits compared to MSSM predictionsMuon flux limits compared to MSSM predictions

Situation 2004

but …  



Lundberg & Edsjö, 2004:Lundberg & Edsjö, 2004:

2005

But: 

• When the halo WIMPs have reached the 
Earth, they have gained speed by the 
Sun’s attraction. Hence, capture is very 
inefficient.

• Halo WIMPs diffuse in the solar system 
by action of the other planets.

• When the halo WIMPs have reached the 
Earth, they have gained speed by the 
Sun’s attraction. Hence, capture is very 
inefficient.

• Halo WIMPs diffuse in the solar system 
by action of the other planets.



Neutrino-induced muon fluxes from 
the Earth center

Neutrino-induced muon fluxes from 
the Earth center

Usual Gaussian 
approximation

Usual Gaussian 
approximation

New estimate including 
solar capture

New estimate including 
solar capture

Maxwell-Boltzmann velocity distribution assumed.



Neutrino-induced muon fluxes from 
the Sun

Neutrino-induced muon fluxes from 
the Sun

• Compared to 
the Earth, much 
better 
complementarity 
due to spin-
dependent 
capture in the 
Sun.

• Compared to 
the Earth, much 
better 
complementarity 
due to spin-
dependent 
capture in the 
Sun.



Comparing direct vs. indirect
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• ~ density

• actual density

• High-velocity region
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• ~ density squared

• Density integrated over
cosmological times

• Low-velocity region

• Branching
ratios !

• ~ density squared

• Density integrated over
cosmological times

• Low-velocity region

• Branching
ratios !

indirectindirect searchessearches directdirect searchessearches



Neutrino-induced fluxes and
future direct detection limits

Neutrino-induced fluxes and
future direct detection limits

SunSun EarthEarth

Future direct detection sensitivity is assumed to be 10-9 pb.Future direct detection sensitivity is assumed to be 10-9 pb.





Magnetic MonopolesMagnetic Monopoles

Dirac 1931
Typical signature when  crossing a superconducting 
coil (Cabrera)
Strong Ionization: ~ (g/e)2 with g/e = 137/2
Astrophysical Parker Bound: ~ 10-15 cm-2 s-1 sr-1

GUT Monopoles may catalyze proton decay
MACRO at Gran Sasso:               

most prominent monopole detector 
(closed in 2000, ionization &ToF)
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Direct detection via
Ionization: MACRO

Flux upper limits for GUT Magnetic MonopolesFlux upper limits for GUT Magnetic Monopoles



Mass 1016-17 GeV/c²
Velocity β ~ 10-4

May catalyze proton decay with σ ≈ σ0 / β2

bright track from Cherenkov radiation from
proton decay products in water detectors

M + p   M + e+ + π0

GUT Magnetic MonopolesGUT Magnetic Monopoles



-4

Direct detection via
Ionization: MACRO

IMB 1986-91
Kamiokande 1985

σ0 = 10-29 cm2 σ0 = 10-28 cm2

1986-89

1993

Baikal

… including limits from p-decay catalysis assumption

Flux upper limits for GUT Magnetic MonopolesFlux upper limits for GUT Magnetic Monopoles



Mass 105 - 1012 GeV
Produced in the Early Universe in later phase transitions

Can be accelerated in the galactic B field to relativistic     
.                                                               velocities

W = gD B L ~ 6 x 1019 eV (B/3x10-6 G) (L/300pc)
Galaxy W ∼ 6 × 1019 eV
Neutron stars               W ∼ 1020 - 1024  eV
AGN W ∼ 1023 - 1024  eV

Connection to highest energy cosmic ray showers
@ E > 1020 eV ?

Intermediate mass Magnetic Monopoles



Cherenkov Light ∝
n2·(g/e)2

≈ 8300

Detection via 
Cherenkov light

n = 1.33

(g/e) = 137/ 2
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Relativistic
Magnetic Monopoles

Relativistic
Magnetic Monopoles
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Soudan
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δ electrons
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Flux upper limits for Magnetic MonopolesFlux upper limits for Magnetic Monopoles

MACRO

IMB 1986-91
Kamiokande 1985

σ0 = 10-29 cm2

σ0 = 10-28 cm2

1986-89

1993

Baikal

AMANDA 1997

Baikal 1998-2002

AMANDA 2000
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Flux upper limits for Magnetic MonopolesFlux upper limits for Magnetic Monopoles

MACRO

IMB 1986-91
Kamiokande 1985

σ0 = 10-29 cm2

σ0 = 10-28 cm2

1986-89

1993

Baikal

AMANDA 1997

Baikal 1998-2002

AMANDA 2000

MACRO, σ0=5⋅10-25 cm2



Aggregates of u, d, s quarks + electrons 
Stable for baryon number  ∼300 < A < 1057

ρN ∼ 3.5 × 1014 g cm-3 (ρnuclei ∼ 1014 g cm-3)
Produced in Early Universe, candidates for sub-dominant dark matter
May be produced also in neutron stars
Light generation via Planck radiation
Virial velocities

NUCLEARITES (Strange Quark Matter+electrons)NUCLEARITES (Strange Quark Matter+electrons)

Supersymmetric Q-balls
Coherent states of squarks, sleptons and Higgs fields
108 < MQ 1025 GeV
Produced in Early Universe, candidates for (sub-dominant) dark matter
Light generation via ionization (SECS) or catalysis of proton decay  
(SENS)
Virial velocities



particle with β = 10-2

2-muon event

Slow Particles in AMANDA / IceCube

β ≥ 5×10-3 (AMANDA)
β : ≥ 10-4 (IceCube):

elongated events

IceCube trigger under
design.



β ~ 10-5 – 10-4

increased counting rates of   
individual PMs (msec windows,   
“Supernova Trigger”)

or

several sequential events   
aligned along a straight path

Slow Particles in AMANDA / IceCube



Fluxes above this line
excluded by Galactic
dark matter limit

Herrin and Teplitz
“6-ton” event

ancient mica

IceCube
after 1 yr

NuclearitesNuclearites

following Buford Price

Macro

IceCube
after 5 yr



Q-balls
stable

5 yr IceCube sensitivity

Baikal limit 
(Girlyanda 86)

Dark Matter Flux Limit

Neutral QNeutral Q--Balls Balls 

following Buford Price

Macro



ConclusionsConclusions
Neutralino is favored DM SUSY candidate. To confirm, one needs:

Neutralino is LSP of SUSY. Confirmation from LHC

Direct detection

Different nuclei

Annual modulation (possibly directional signature)

Indirect detection

Gammas: GLAST, CTA;   charged CRs: AMS

Neutrinos: Earth disfavoured , Neutrino flux from Sun complementary
to direct searches due to spin-dependent capture in Sun

Highest discovery potential with direct methods if they reach a sensitivity below
10-10 pb.

Next 5 years: IceCube well competes with direct 10-9 pb searches.

Exotic superheavy particles (Q-balls, monopoles, ..): sensitivity will improve by
1-2 orders in the next years.



EndEnd
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