

The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering

Loopfest 2024, SMU, Dallas, May 21 2024

Johannes Blümlein | May 11, 2024

DESY AND TU DORTMUND

- J. Ablinger et al., The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements $A_{gg,Q}$ and $\Delta A_{gg,Q}$, JHEP **12** (2022) 134.
- A. Behring, J.B., and K. Schönwald, The inverse Mellin transform via analytic continuation, JHEP 06 (2023)
 62.
- J. Ablinger et al., The first-order factorizable contributions to the three-loop massive operator matrix elements $A_{Qa}^{(3)}$ and $\Delta A_{Qa}^{(3)}$, Nucl. Phys.B 999 (2024) 116427.
- J. Ablinger et al., The non-first-order-factorizable contributions to the three-loop single-mass operator matrix elements A⁽³⁾_{Qq} and ΔA⁽³⁾_{Qq}, 2403.00513 [hep-ph].

www.aesy.ae

The Collaboration

[DESY-JKU Linz & younger colleagues]

2007-2009:

2-loop general N-results and 3-loop moments

- I. Bierenbaum, JB. S. Klein
- 2010-now:

Individual 3-loop OMEs and HQ Wilson-coefficients at general N and x

J. Ablinger, A. Behring, JB, A. De Freitas, A. Hasselhuhn, S. Klein, A. von Manteuffel, M. Round, M. Saragnese, C. Schneider, K. Schönwald, F. Wißbrock

 Some special 2-loop applications (including massive QED) also: G. Falcioni, W. van Neerven, T. Pfoh, C. Raab

Earlier calculations

■ 1976-1982; 1991: Analytic 1-loop results

3-loop Corrections

E. Witten; J. Babcock, D. W. Sivers, S. Wolfram; M.A. Shifman, A.I. Vainshtein, V.I. Zakharov; J.P. Leveille, T.J. Weiler; M. Glück, E. Hoffmann, E. Reya; C. Watson, W. Vogelsang

1995-1998: Analytic 2-loop results

M. Buza, Y. Matiounine, R. Migneron, W. van Neerven, J. Smith 1992-1995: Numeric 2-loop results E. Laenen, W. van Neerven, S. Riemersma, J. Smith

Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering

Introduction

0000

0000000000000

May 11, 2024

Deep-Inelastic Scattering (DIS):

$$\begin{split} W_{\mu\nu}(q,P,s) &= \frac{1}{4\pi} \int d^{4}\xi \exp(iq\xi) \langle P,s \mid [J_{\mu}^{em}(\xi), J_{\nu}^{em}(0)] \mid P,s \rangle = \\ &\frac{1}{2x} \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}} \right) F_{L}(x,Q^{2}) + \frac{2x}{Q^{2}} \left(P_{\mu}P_{\nu} + \frac{q_{\mu}P_{\nu} + q_{\nu}P_{\mu}}{2x} - \frac{Q^{2}}{4x^{2}}g_{\mu\nu} \right) F_{2}(x,Q^{2}) \\ &+ i\varepsilon_{\mu\nu\lambda\sigma} \frac{q^{\lambda}S^{\sigma}}{P.q} g_{1}(x,Q^{2}) + i\varepsilon_{\mu\nu\lambda\sigma} \frac{q^{\lambda}(P.qS^{\sigma} - S.qP^{\sigma})}{(P.q)^{2}} g_{2}(x,Q^{2}) \,. \end{split}$$

The structure functions $F_{2,L}$ and $g_{1,2}$ contain light and heavy quark contributions. At 3-loop order also graphs with two heavy quarks of different mass contribute. \implies Single and 2-mass contributions: *c* and *b* quarks in one graph.

Factorization of the Structure Functions

At leading twist the structure functions factorize in terms of a Mellin convolution

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs). \otimes denotes the Mellin convolution

$$f(x)\otimes g(x)\equiv \int_0^1 dy\int_0^1 dz\,\,\delta(x-yz)f(y)g(z)$$
.

Many of the subsequent calculations are performed in Mellin space, where \otimes reduces to a multiplication, due to the Mellin transformation

$$\hat{f}(N)=\int_0^1 dx \ x^{N-1}f(x) \ .$$

Introduction

Computational Aspec

Wilson coefficients:

$$\mathbb{C}_{j,(2,L)}\left(N,\frac{Q^{2}}{\mu^{2}},\frac{m^{2}}{\mu^{2}}\right) = C_{j,(2,L)}\left(N,\frac{Q^{2}}{\mu^{2}}\right) + H_{j,(2,L)}\left(N,\frac{Q^{2}}{\mu^{2}},\frac{m^{2}}{\mu^{2}}\right) \ .$$

At $Q^2 \gg m^2$ the heavy flavor part

$$H_{j,(2,L)}\left(N,\frac{Q^2}{\mu^2},\frac{m^2}{\mu^2}\right) = \sum_{i} C_{i,(2,L)}\left(N,\frac{Q^2}{\mu^2}\right) A_{ij}\left(\frac{m^2}{\mu^2},N\right)$$

[Buza, Matiounine, Smith, van Neerven 1996]

factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements (OMEs) of local operators O_i between partonic states j

$$\mathsf{A}_{ij}\left(rac{m^2}{\mu^2},\mathsf{N}
ight)=\langle j\mid O_i\mid j
angle \;.$$

→ additional Feynman rules with local operator insertions for partonic matrix elements. The unpolarized light flavor Wilson coefficients are known up to NNLO [Vermaseren, Moch, Vogt, 2005; JB, Marquard, Schneider, Schönwald, 2022]. For $F_2(x, Q^2)$: at $Q^2 \gtrsim 10m^2$ the asymptotic representation holds at the 1% level.

Introduction 0000 3-loop Corrections

Computational Aspect

Quantitative Results

Conclusions O

The main time-line for the 3-loop corrections

- 2005 F_L [no massive 3-loop OMEs needed]
- 2010 All unpolarized N_F terms and $A_{aq,Q}^{(3)}$, $A_{qq,Q}^{(3),PS}$
- 2014 unpolarized logarithmic 3-loop contributions and $A_{qq,Q}^{(3)}$, $(\Delta)A_{qq,Q}^{(3),NS}$, $A_{Qq}^{(3),PS}$
- 2017 two-mass corrections $A_{gq,Q}^{(3)}$, $(\Delta)A_{qq,Q}^{(3),NS}$, $A_{Qq}^{(3),PS}$
- 2018 two-mass corrections A⁽³⁾_{gg,Q}
- 2019 2-loop correction: $(\Delta)A_{Qq}^{(2),PS}$ whole kinematic region and $\Delta A_{Qq}^{(3),PS}$
- 2019 two-mass corrections $\Delta A_{Qq}^{(3),PS}$
- 2020 two-mass corrections $\Delta A_{gg,Q}^{(3)}$
- 2021 polarized logarithmic 3-loop contributions and $\Delta A_{qg,Q}^{(3)}, \Delta A_{qq,Q}^{(3),PS}, \Delta A_{gq}^{(3)}$
- 2022 3-loop polarized massless Wilson coefficients [JB, Marquard, Schneider, Schönwald]
- 2022 corrected the polarized 2-loop contributions
- 2022 (Δ)A⁽³⁾_{gg,Q}
- 2023 (Δ) $A_{Qq}^{(3)}$: 1st order factorizing parts
- 2024 (Δ) $A_{Qg}^{(3)}$, [two-mass corrections (Δ) $A_{Qg}^{(3)}$]

Introduction

Computational Aspects

- 45 physics papers (journals)
- 26 mathematical papers
 - 1998 Harmonic sums [Vermaseren; JB]
 - 2000,2005 Analytic continuations of harmonic sums to $N \in \mathbb{C}$ [JB; JB, S. Moch]
 - 2003 Concrete shuffle algebras [JB]
 - 2009 Guessing large recurrences [JB, M. Kauers, S. Klein, C. Schneider]
 - 2009 Structural relations of harmonic sums [JB]
 - 2009 MZV Data mine [JB, D. Broadhurst, J. Vermaseren]
 - 2011 Cyclotomic harmonic sums and harmonic polylogarithms [Ablinger, JB, Schneider]
 - 2013 Generalized harmonic sums and harmonic polylogarithms [Ablinger, JB, Schneider]; 2001 [Moch, Uwer, Weinzierl]
 - 2014 Finite binomial sums and root-valued iterated integrals [Ablinger, JB, Raab, Schneider]
 - 2017 ₂*F*₁ solutions (iterated non-iterative integrals) [J. Ablinger, JB, A. De Freitas, M. van Hoeij, E. Imamoglu, C. Raab, C.S. Radu, C. Schneider]
 - 2017 Methods of arbitrary high moments [JB, Schneider]
 - 2018 Automated solution of first-order factorizing differential equation systems in an arbitrary basis [J. Ablinger, JB, P. Marquard, N. Rana, C. Schneider]
 - 2023 Analytic continuation form t to x-space [JB, Behring, Schönwald]

Important Computer-Algebra Packages

C. Schneider: Sigma, EvaluateMultiSums, SumProduction, SolveCoupledSystem

J. Ablinger: HarmonicSums

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results	Conclusions
0000	000000	0000	0000000000	0
Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering			May 11, 2024	7/29

The Wilson Coefficients at large Q^2

$$\begin{split} L_{q,(2,L)}^{NS}(N_{F}+1) &= a_{s}^{2} \left[A_{qq,(2)}^{(2),NS}(N_{F}+1) \delta_{2} + \hat{C}_{q,(2,L)}^{(2),NS}(N_{F}) \right] + a_{s}^{3} \left[A_{qq,(2)}^{(3),NS}(N_{F}+1) \delta_{2} + A_{qq,(2)}^{(2),NS}(N_{F}+1) \delta_{2} + A_{qq,(2)}^{(2),NS}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2),NS}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2)}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2)}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2)}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2),NS}(N_{F}+1) + A_{qq}^{(2),NS}(N_{F}+1) \delta_{q,(2,L)}^{(2),NS}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2),NS}(N_{F}+1) + A_{qq,(2,L)}^{(2),NS}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2),NS}(N_{F}+1) + A_{qq}^{(2),NS}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2),NS}(N_{F}+1) + A_{qq}^{(2),NS}(N_{F}+1) \delta_{q,(2,L)}^{(2),NS}(N_{F}+1) \delta_{2} + A_{qq,(2,L)}^{(2),NS}(N_{F}+1) + A_{qq}^{(2),NS}(N_{F}+1) \delta_{qq,(2,L)}^{(2),NS$$

- The case for two different masses obeys an analogous representation.
- Note the contributions of the massless Wilson coefficients.

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results	Conclusions
0000	000000	0000	0000000000	0
Johannes Blümlein – The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering		Scattering	May 11, 2024	8/29

The variable flavor number scheme

Matching conditions for parton distribution functions:

$$\begin{split} f_{k}(N_{F}+2) + f_{\bar{K}}(N_{F}+2) &= A_{qq,O}^{NS}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) \cdot \left[f_{k}(N_{F}) + f_{\bar{K}}(N_{F})\right] + \frac{1}{N_{F}}A_{qq,O}^{PS}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) \cdot \Sigma(N_{F}) \\ &+ \frac{1}{N_{F}}A_{qg,O}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) \cdot G(N_{F}), \\ f_{G}(N_{F}+2) + f_{\overline{O}}(N_{F}+2) &= A_{Oq}^{PS}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) \cdot \Sigma(N_{F}) + A_{Og}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) \cdot G(N_{F}), \\ \Sigma(N_{F}+2) &= \left[A_{qq,O}^{NS}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) + A_{Qq}^{PS}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) + A_{Og}^{PS}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) + A_{Og}^{PS}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right)\right] \cdot \Sigma(N_{F}) \\ &+ \left[A_{qg,O}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) + A_{Og}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right)\right] \cdot G(N_{F}), \\ G(N_{F}+2) &= A_{gq,O}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) \cdot \Sigma(N_{F}) + A_{gg,O}\left(N_{F}+2,\frac{m_{1}^{2}}{\mu^{2}},\frac{m_{2}^{2}}{\mu^{2}}\right) \cdot G(N_{F}). \end{split}$$

The charm and bottom quark masses are not that much different.

Introduction 0000 3-loop Corrections

Computational Aspects

Quantitative Results

Conclusion: O

Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering

May 11, 2024

Relative effect in unpolarized NNLO evolution

 $Q^2 = 10, 10^2, 10^3, 10^4 \text{ GeV}^2$ dotted, dash-dotted, dashed, full lines. [M. Saragnese, 2022]

The unpolarized world deep-inelastic data have a precision of O(1%).

Introduction

3-loop Corrections

Computational Aspects

Quantitative Results

Conclusion: O

Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering

May 11, 2024

Relative effect in polarized NNLO evolution

 $Q^2 = 10, 10^2, 10^3, 10^4 \text{ GeV}^2$ dotted, dash-dotted, dashed, full lines. [M. Saragnese, 2022]

The future polarized data at the EIC will reach a precision of O(1%).

Introduction

3-loop Corrections

Computational Aspects

Quantitative Results

Conclusion: O

Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering

May 11, 2024

The relative contribution of HQ to non-singlet structure functions at N³LO

Scheme-invariant evolution

Left: The relative contribution of the heavy flavor contributions due to *c* and *b* quarks to the structure function F_2^{NS} at N³LO; dashed lines: 100 GeV²; dashed-dotted lines: 1000 GeV²; dotted lines: 10000 GeV². Right: The same for the structure function xg_1^{NS} at N³LO. [JB, M. Saragnese, 2021].

Introduction

3-loop Corrections 000000● Computational Aspe

Quantitative Results

Conclusion: O

Calculation of the 3-loop operator matrix elements

The OMEs are calculated using the QCD Feynman rules together with the following operator insertion Feynman rules:

Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering

May 11, 2024

Calculation methods

- Diagram generation: QGRAF [Nogueira, 1993]
- Lorentz and Dirac algebra: Form [Vermaseren, 2000]
- Color algebra: Color [van Ritbergen, Schellekens, Vermaseren, 1999]
- IBP reduction: Reduze 2 [von Manteuffel, Studerus 2009,2012]
- N space calculations:
 - Method of arbitrary large moments [JB, Schneider, 2017]
 - Summation theory and solving first-order factorizing recurrences: Sigma [Schneider, 2007,2013]
 - Reduce the results in the respective function spaces: HarmonicSums [Ablinger, 2009, 2012, etc.]
- x space calculations
 - solve 1st order factorizing differential equations
 - transform from N → t-space, solve the respective systems of differential equations (not necessarily factorizing to first order) [Behring, JB, Schönwald, 2023]
 - Reduce the results in the respective function spaces; iterated integrals over alphabets containing also higher transcendental letters [Ablinger et al. 2017]
 - The higher transcendental letters have to be known in analytic form for $z \in \mathbb{C}$.
- Both N and x space techniques are needed to solve the present problem. The recurrences for A⁽³⁾_{Qg} need far more than 15000 moments to be found & there are no technologies yet to solve non-first order factorizing recurrences analytically.
- Final numerical representation: In the most complicated cases: local series expansions in *x* at high precision.

Mathematical Background

- massless and massive contributions to two-loops: harmonic sums
- all pole terms to three-loops: harmonic sums
- all massless Wilson coefficients to three-loops: harmonic sums

Single-mass OMEs

- all N_F of the massive OMEs three-loops: harmonic sums
- $(\Delta)A_{qq,Q}^{(3),NS}, (\Delta)A_{gq,Q}^{(3)}, (\Delta)A_{qg,Q}^{(3)}, (\Delta)A_{qq,Q}^{(3),PS}$ to three-loops: harmonic sums
- $(\Delta)A_{Qq}^{(3),PS}$ to three-loops: generalized harmonic sums and also $H_{\vec{a}}(1-2x)$
- $(\Delta)A_{gq,Q}^{(3)}$ to three-loops: finite binomial sums and square-root valued iterated integrals

• $(\Delta)A_{Qg}^{(3)}$ to three-loops:

- first-order factorizing contributions: finite binomial sums; all iterated integrals in *x*-space can be rationalized
- non-first-order factorizing contributions: 2F1 letters in iterated integrals in x-space

Two-mass OMEs

- $(\Delta)A_{qq,Q}^{(3),NS}, (\Delta)A_{gq,Q}^{(3)}$: harmonic sums
- $(\Delta)A_{Qq}^{(3),PS}$: analytic solutions in x-space only; different supports; root-values letters
- $(\Delta)A_{gg,Q}^{(3)}$: root-valued iterated integrals

Computational Aspects

Inverse Mellin transform via analytic continuation: $a_{Qa}^{(3)}$

Resumming Mellin *N* into a continuous variable *t*, observing crossing relations. Ablinger et al. 2012

$$\sum_{k=0}^{\infty} t^{k} (\Delta . p)^{k} \frac{1}{2} [1 \pm (-1)^{k}] = \frac{1}{2} \left[\frac{1}{1 - t\Delta . p} \pm \frac{1}{1 + t\Delta . p} \right]$$

$$\mathfrak{A} = \{f_{1}(t), ..., f_{m}(t)\}, \quad \mathbf{G}(b, \vec{a}; t) = \int_{0}^{t} dx_{1} f_{b}(x_{1}) \mathbf{G}(\vec{a}; x_{1}), \quad \left[\frac{d}{dt} \frac{1}{f_{a_{k-1}}(t)} \frac{d}{dt} ... \frac{1}{f_{a_{1}}(t)} \frac{d}{dt} \right] \mathbf{G}(\vec{a}; t) = f_{a_{k}}(t)$$

The $f_i(t)$ include higher transcendental letters. Regularization for $t \to 0$ needed.

$$F(N) = \int_{0}^{1} dx x^{N-1} [f(x) + (-1)^{N-1} g(x)]$$

$$\tilde{F}(t) = \sum_{N=1}^{\infty} t^{N} F(N)$$

$$f(x) + (-1)^{N-1} g(x) = \frac{1}{2\pi i} \left[\text{Disc}_{x} \tilde{F}\left(\frac{1}{x}\right) + (-1)^{N-1} \text{Disc}_{x} \tilde{F}\left(-\frac{1}{x}\right) \right].$$
 (1)

t-space is still Mellin space. One needs closed expressions to perform the analytic continuation (1). Analytic continuation is needed to calculate the small *x* behaviour. The final expansion maps the problem into a very large number of *G*-constants, including those with higher transcendental letters.

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results	Conclusions
0000	000000	000●	0000000000	0
Johannes Blümlein – The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering			May 11, 2024	16/29

Numerical Results : $L_{g,2}^{S}$ and $L_{g,2}^{PS}$

Left panel: The non– N_F terms of $a_{gg,Q}^{(3)}(N)$ (rescaled) as a function of *x*. Full line (black): complete result; upper dotted line (red): term $\propto \ln(x)/x$; lower dashed line (cyan): small *x* terms $\propto 1/x$; lower dotted line (blue): small *x* terms including all $\ln(x)$ terms up to the constant term; upper dashed line (green): large *x* contribution up to the constant term; dash-dotted line (brown): complete large *x* contribution. Right panel: the same for the N_F contribution.

 Introduction
 3-loop Corrections
 Computational Aspects
 Quantitative Results
 Conclusions

 0000
 0000000
 00000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 $\Delta a_{gg}^{(3)}$

The non– N_F terms of $\Delta a_{gg,Q}^{(3)}(N)$ (rescaled) as a function of *x*. Full line (black): complete result; lower dotted line (red): term $\ln^5(x)$; upper dotted line (blue): small *x* terms $\propto \ln^5(x)$ and $\ln^4(x)$; upper dashed line (cyan): small *x* terms including all $\ln(x)$ terms up to the constant term; lower dash-dotted line (green): large *x* contribution up to the constant term; dash-dotted line (brown): full large *x* contribution. Right panel: the same for the N_F contribution.

Introduction 0000 3-loop Corrections

Computational Aspects

Quantitative Results

1009 of the total 1233 Feynman diagrams have first-order factorizing contributions only and are given by G-functions up to root-values letters. The letters for all constants can be rationalized.

 $a_{Qg}^{(3)}(x)$ as a function of x, rescaled by the factor x(1 - x). Left panel: smaller x region. Full line (red): $a_{Qg}^{(3)}(x)$; dashed line (blue): leading small-x term $\propto \ln(x)/x$ [Catani, Ciafaloni, Hautmann, 1990]; dotted line (green): $\ln(x)/x$ and 1/x term; dash-dotted line (black): all small-x terms, including also $\ln^{k}(x)$, $k \in \{1, ..., 5\}$. Right panel: larger x region. Full line (red): $a_{Qg}^{(3)}(x)$; dashed line (brown): leading large-x terms up to the terms $\propto (1 - x)$, covering the logarithmic contributions of $O(\ln^{k}(1 - x))$, $k \in \{1, 4\}$.

 $a_{Qg}^{(3)}(x)$ as a function of *x*, rescaled by the factor x(1 - x). Left panel: smaller *x* region. Full line (red): $a_{Qg}^{(3)}(x)$; dashed line (blue): leading small-*x* term $\propto \ln(x)/x$ [Catani, Ciafaloni, Hautmann, 1990]; light blue region: estimates of [Kawamura et al., 2012]; gray region: estimates of [ABMP 2017]. Right panel: larger *x* region. Full line (red): $a_{Qg}^{(3)}(x)$; light blue region: estimates of [Kawamura et al., 2012]; gray et al., 2012] gray region: estimates of [ABMP 2017].

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results	Conclusions O
Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering			May 11, 2024	21/29

 $\Delta a_{Qg}^{(3)}(x)$ as a function of *x*, rescaled by the factor x(1 - x). Left panel: full line (red): $\Delta a_{Qg}^{(3)}(x)$; dashed line (green): the small-*x* terms $\ln^k(x)$, $k \in \{1, \ldots, 5\}$; dotted line (blue): the large-*x* terms $\ln^l(1 - x)$, $l \in \{1, \ldots, 4\}$. Right panel: larger *x* region. Full line (red): $\Delta a_{Qg}^{(3)}(x)$; dotted line (blue): the large-*x* terms $\ln^l(1 - x)$, $l \in \{1, \ldots, 4\}$.

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results	Conclusions
0000	000000	0000	0000000000	0
Johannes Blümlein – The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering			May 11, 2024	22/29

The two mass contributions over the whole T_F^2 -contributions to the OME $\tilde{A}_{aq}^{(3)}$.

Two-mass Results: $\tilde{A}^{(3)}_{gg,Q}$

Introduction

3-loop Corrections

Computational Aspects

Quantitative Results

Conclusion: O

Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering

May 11, 2024

Relative contribution of $\tilde{A}_{Qq}^{(3)}(N)$

 $Q^2 = 30 \text{ GeV}^2$: dotted line; $Q^2 = 10^2 \text{ GeV}^2$: dashed line; $Q^2 = 10^4 \text{ GeV}^2$: full line.

Introduction 0000 3-loop Corrections

Computational Aspects

Quantitative Results

The massless contributions to F₂

Introduction 0000 3-loop Corrections

Computational Aspects

Quantitative Results

Single-mass contributions to $F_2^{c,b}$

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results	Conclusions
0000	0000000	0000	000000000000	0
Johannes Blümlein - The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering			May 11, 2024	26/29

Single-mass contributions to $F_2^{c,b}$

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results	Conclusions
Johannes Blümlein –	The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering	0000	May 11, 2024	27/29

Single-mass contributions to $F_2^{c,b}$

Introduction	3-loop Corrections	Computational Aspects	Quantitative Results ○○○○○○○○○●	Conclusions O
Johannes Blümlein – The 3-Loop Heavy Flavor Corrections to Deep-Inelastic Scattering		May 11, 2024	28/29	

Conclusions

- All unpolarized and polarized single-mass OMEs and the associated massive Wilson coefficients for $Q^2 \gg m_Q^2$ have been calculated. The unpolarized and polarized massless three-loop Wilson coefficients were calculated and contribute to the present results.
- The calculation of all unpolarized and polarized two-mass OMEs, except for (Δ)A⁽³⁾_{Qg}, are finished and the remaining OMEs will be available very soon.
- Various new mathematical and technological methods were developed during the present project. They are available for use in further single- and two-mass calculations in other QFT projects.
- Very soon new precision analyses of the world DIS-data to measure $\alpha_s(M_Z)$ and m_c at higher precision can be carried out.
- Both the single- and two-mass VFNS at 3-loop order will be available in form of a numerical program, to be used e.g. in applications at hadron colliders.
- The results in the polarized case prepare the analysis of the precision data, which will be taken at the EIC starting at the end of this decade.
- For all sub-processes it turned out that the small x BFKL approaches fail to present the physical result due to quite a series of missing subleading terms, which substantially correct the LO behaviour. The correct description requires the full calculation.