
BMR [3] and BFMRB [2] use Euclidean space time; this introduces a
factor (−1)p′

compared to our definition of Feynman diagrams, where p′ is
the weighted number of propagators and numerators in the corresponding
diagram.
The conventions are such that the tadpoles become:
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For an l-loop master integral with p propagators the relations between
the integrals become (assuming here µ2

0 = m2 = a = 1):
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One has also to take into account the various definitions of the series
expansions:
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