
Graph Theory AlgorithmsGraph Theory Algorithms
andand

Feynman Diagram ComputationsFeynman Diagram Computations

M. Czakon

CAPP05, Zeuthen 3-8 April 2005

II
● Introduction
● Basic definitions
● Graph representations

Feynman diagrams in perturbative calculations

● generation:

 rapid growth of the number of diagrams with the number of
 loops and legs

 examples: ~10000 in electroweak 2-loop calculations
 ~50000 in 4-loop beta function calculations

 reasons to use the computer: hard work and errors avoided

 note: most current problems would be otherwise unsolvable
 note: better methods available for tree-level processes
 (Dyson-Schwinger equations) which avoid diagrams
 altogether

● symmetry group determination:

 the generation phase should give as little identical diagrams as
 possible. this gives rise to so-called symmetry factors

~1
n !

~1
2

How about this:

there is a symmetry under 0 <-> 1, 2 <-> 3, thus a factor of ½

another use: symmetrization to obtain shorter/faster programs

● determination of vanishing diagrams:

in dimensional regularization this diagram would vanish, because
there is a subdiagram, which has no scale.

How to check this case at the diagram generation level?

● finding subtopologies:

 if we start from and cancel numerators with
 denominators we will obtain

 Are they equal?

if we expand the result is

How to organize an expansion automatically?

Major public domain software for diagram manipulation

● qgraf (FORTRAN)
+
 fast
-
 allows basically for diagram generation and nothing more
 not extensible due to code format
 the user needs his own output parsers for anything non-trivial

● DIANA (C)
+
 extensible
 own flexible language
-
 interpreter of qgraf output (not really a bad thing)
 one more language to learn

● FeynArts (MATHEMATICA)
+
 extensible
 user friendly
-
 slow
 doesn't really have a topology generator
 topologies hardcoded up to three loops.

● Grace (C)
+
 very fast
-
 crashes at higher loops and generates too many diagrams
 bugs or incorrect algorithm?

A bit of topological analysis can only be found in DIANA

Idea of a C++ library: DiaGen

Field

Vertex

Model

PrototypeDiagram

ScalarDiagram

Topology

TopologyGenerator

DiagramGenerator

design goals:
speed
functionality
extensibility

class content:

Graphs are everywhere:

● electronic circuit design

● route determination in navigation systems

● U-Bahn plans

● pattern matching in computer algebra systems

and of course...

...in Feynman diagram computations!

let's turn to a few:

Basic definitions:

● a graph is a pair G=(V,E) of sets satisfying

● the elements of V are called nodes

● the elements of E are called edges

● a directed graph is a pair (V,E) of disjoint sets with two maps
 source: E -> V and target: E -> V

● if there are several edges with the same source and target
 they are called multiple edges

● if the source and target of an edge are equal then the edge
 is called a loop

E⊆V×V

Is a QFT topology an undirected or a directed graph?

● It is a directed graph because we want to assign momenta to
 edges and we need to know the direction of the momentum flow.

● All the other attributes of a topology ignore the direction of
 the edges.

We need to chose a representation for the V and E sets. The most
obvious choice:

● V = {0, 1, ..., |V|-1}, E = {0, 1, ..., |E|-1}

fits nicely into the int (or unsigned int) type.

This is not the only possibility. Nodes and edges could be classes.

definition: the degree of a node v w/r to some subset

W⊆V
dGv ,W=|{w∈W:∃e∈Esourcee=v∧targete=w

∨sourcee=w∧targete=v }|
We will also write .dG v=dG v ,V

How to represent the external lines of a QFT topology?

● take nodes of adjacency 1 as external
● their adjacent edges will correspond to external lines

This may be seen to correspond to introducing sources in the
generating functional (path integral)

Possible representations of a graph on a computer:

● Adjacency matrix:

 for undirected graphs it is symmetric
 storage needed is of
 most algorithms run in quadratic time w/r to |V|
 we will need it only for isomorphism and symmetry group problems

AG=aij0≤i , j|V |

aij=|{e∈E:sourcee=i∧targete=j }|

O|V|2

Example:

AG=
0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 0 1
0 1 1 0 0 1
1 0 0 1 1 0



● Adjacency lists: |V| lists such that the i-th list contains all
 nodes j for which there exists an edge that
 source(e) = i and target(e) = j

 storage needed is of O(|V|+|E|)
 many algorithms can now run in linear time
 additional information will be needed

 Example:

e∈E

0: 1 2 5
1: 0 3 4
2: 0 3 4

3: 1 2 5
4: 1 2 5
5: 0 3 4

Adjacency lists have to make reference to edges. Suitable
representation:

● every node has 2 lists of edges: in-going and out-going

● there is a list of adjacent nodes for each edge

In C++
struct AdjacentEdges
{
 vector<int> _edges[2];
};

struct AdjacentNodes
{
 int _node[2];
};

vector<AdjacentEdges> _node;

vector<AdjacentNodes> _edge;

Advantage: both sets of
edges and nodes are explicit

IIII
● Connectedness, cycles, shortest paths

 and graph traversal
● QFT properties: 1PI, on-shell, etc.
● Biconnected components

definition: let V , E be a graph. a path from v to w , where
v , w∈V , is a sequence of nodes v0 , ... , vk , such that
v0=v , vk=w and vi , vi1∈E.

definition: a graph is connected if for every pair v, w of its nodes
 there is a path from v to w.

definition: a connected component of a graph G=(V,E) is a
 maximal connected subgraph of G.

Connectedness testing is necessary because the topology
generation algorithm generates also disconnected topologies

definition: a path from v to w, such that v and w coincide is a cycle

definition: let be the two element field {0,1}. the edge space
 E(G) is the vector space of all functions E->

definition: the cycle space C(G) is the subspace of E(G) spanned by
 all the cycles of G

definition: the cyclomatic number is the dimension of C(G)

ℕ2
ℕ2

the cyclomatic number is simply the number of QFT loops

Proposition: dim C(G) = |E|-|V|+1

Sketch of a proof:

an example graph with cycles
thick lines represent the spanning tree

Any connected tree has |V|-1 edges (easy to see by induction).
Edges not contained in the spanning tree must belong to independent
cycles, thus dim C(G) = |E|-(|V|-1).

Implication:

QFT topologies have only degree 1, 3 and 4 nodes. Since
 and we have
 and the largest number of nodes is given by the
right hand side.

2ne=∑i dvi=n13n34n4 nl=ne−n1n3n41
n32n4=n12nl−2

Graph traversal:

● most graph algorithms need to explore the graph starting at
 some node s

A simple algorithm:
S  { s }
mark all edges unused
while there are unused edges leaving nodes in S
do chose any v∈S and an unused edge v , w∈E

mark v , w used
S  S∪ { w }

od

Upon termination S contains all nodes reachable from s and is thus
the connected component containing node s

A closer look at a realization of the algorithm called
depth first search

At first all the edges are marked unused and the S, T (tree edges)
and B (backward edges) sets are empty.

procedure dfs(v)
add v to S
for all (v,w) ∈ E
do if (v,w) not used
 then mark (v,w) used
 if w ∉ S
 then add (v,w) to T
 dfs(w)
 else add (v,w) to B
 fi
 fi
od
end

T is the spanning tree
|B| = dim C(G)
if |S| ≠ |V|, G is not connected

Exercise:

could this tree have been generated
by depth first search:
 ?
 if yes, what was the
 order of the nodes?

In DFS traversal we always start from the last node visited, because
the nodes are implicitly on a stack (recursive calls of the procedure)

If we replace the stack with a queue, where elements are pushed at
the back and popped at the front, the exploration is called
breadth first search.

procedure explorefrom(s)
add s to S
push s on Q
while Q≠Ø
do v←pop(Q)
 for all (v,w)∈E
 do if w∉S
 then add w to S
 push w on Q
 fi
 od
od

BFS exploration can be used to minimize the length of a path
between two nodes. This is the shortest path problem.

Finding the shortest path may be interesting if we are doing
expansions of two-point functions. We want to expand the smallest
number of propagators.

is better than

If we can test for connectedness and explore connected components
we can easily implement tests for QFT topological properties:

a topology is 1-particle-reducible if there is at least
one internal edge, such that if it removed the graph
becomes disconnected

a topology contains tadpoles if there is at least one
internal edge, such that if it is cut, then one of
the connected components contains no external nodes

a topology is not on-shell if there is at least one
internal edge, such that if it is cut, then one of
the connected components contains exactly one
external node.

Direct implementation of these definitions is easy, but has high
computational complexity. For real Feynman diagrams this is
irrelevant

An interesting test: does the topology contain self-energy insertions

cutting two edges gives a component that contains
no external nodes

A definition based on momenta alone (two different edges with
the same momentum) gives a counter-intuitive result:

To eliminate the first graph one would have to forbid vanishing
momenta, which would also eliminate the second graph

generating topologies with qgraf shows that it uses a momentum
based definition of a self-energy insertion

definition: a graph G is k-connected if |G| > k and G-X is connected
 for every set X⊆V with |X|<k. 2-connected graphs are
 called biconnected

definition: a node v is an articulation point of G if G-v is not
 connected

This example illustrates the use of biconnected components:
articulation points

removing these nodes leaves the graph
disconnected. there are 4 biconnected
components

If we can find all biconnected components and check which have
no external momentum flow, we can eliminate scaleless components

The DFS traversal can be adapted to find biconnected components

● apart from the first node, a component is always entered through
 the articulation point

● backward edges within a component cannot point beneath the
 articulation point

● let us call the centre of a component the first node in a component
 explored after the articulation point

● if dfsnum(v) is the number of the node in the dfs tree, then let's
 define the function lowpt(v), which gives the lowest dfsnum
 reachable by tree and backward edges

● the center of a component is the node v for which
 lowpt(v) = dfsnum(parent(v))

procedure dfs(v)
dfsnum(v) count; count count+1 ← ←
add v to S
lowpt(v) dfsnum(v)←
push v on unfinished
for all (v,w)∈E
do if w∉S
 then parent(w) v←
 dfs(w)
 lowpt(v) min(lowpt(v), lowpt(w))←
 else lowpt(v) min(lowpt(v), dfsnum(w))←
 fi
od
if dfsnum(v) > 0 and lowpt(v)=dfsnum(parent(v))
then repeat w pop(unfinished)←
 until w=v co the nodes popped together with the
 the node parent(v) form the b.c.c.
fi
end

At first, S and unfinished are empty, and count is 0
The complete algorithm:

#include <iterator>
#include "Topology.hpp"

using std::ostream_iterator;
using std::cout;
using std::endl;

int
main()
{
 Topology t(9);

 t.insert_edge(5,1);
 t.insert_edge(1,4);
 t.insert_edge(1,0);
 t.insert_edge(4,0);
 t.insert_edge(4,3);
 t.insert_edge(0,2);
 t.insert_edge(2,3);
 t.insert_edge(3,6);
 t.insert_edge(2,7);
 t.insert_edge(2,8);
 t.insert_edge(7,8);
 t.insert_edge(7,8);

 t.postscript_print("con.ps");

 vector<TopologyComponent> components = t.biconnected_components();

 for (vector<TopologyComponent>::iterator c = components.begin();
 c != components.end(); ++c)
 {
 cout << "nodes: ";
 copy(c->_nodes.begin(), c->_nodes.end(),

 ostream_iterator<int>(cout, " "));
 if (c->_vacuum) cout << ", vacuum";
 cout << endl;
 }
}

Code for

g++ -O -o con con.cpp Topology.cpp
./con

If compiled with:

The output is:
nodes: 5 1
nodes: 8 7 2 , vacuum
nodes: 6 3
nodes: 2 3 4 1 0

Exercise:

modify the code to determine the b.c.c. of (chose some labelling)

print also the edges and articulation points (see Topology.hpp)

IIIIII
● Graph isomorphism
● Symmetry groups

definition: two graphs (V,E) and (V',E') are isomorphic if there
is a bijection σ: V -> V' such that σ(E) = E'.

We need the concept of graph
isomorphism when generating
topologies:

calculating diagrams is
expensive, we don't want to
calculate the same thing many
times

Are these isomorphic?

What about these?

Graph isomorphism has other surprising applications:

id f(x?,x?)*g(y?,z?)*g(z?,y?) = 1;

Let's check:

Edge list: (0,1)(2,3)(4,5)(1,3)(3,5)(5,0)(0,2)(2,4)(4,1)

Adjacency matrix: 0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 0 1
0 1 1 0 0 1
1 0 0 1 1 0

Edge list: (0,4)(4,5)(5,2)(2,1)(1,3)(3,0)(1,4)(0,2)(3,5)

Adjacency matrix: 0 0 1 1 1 0
0 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 1 0 0 0 1
0 0 1 1 1 0They don't look the same...

Let's try with a program:

 If we compile this program with:#include "Topology.hpp"

using std::cout;
using std::endl;

int
main()
{
 Topology t1(6), t2(6);

 t1.insert_edge(0,1);
 t1.insert_edge(2,3);
 t1.insert_edge(4,5);
 t1.insert_edge(1,3);
 t1.insert_edge(3,5);
 t1.insert_edge(5,0);
 t1.insert_edge(0,2);
 t1.insert_edge(2,4);
 t1.insert_edge(4,1);

 t2.insert_edge(0,4);
 t2.insert_edge(4,5);
 t2.insert_edge(5,2);
 t2.insert_edge(2,1);
 t2.insert_edge(1,3);
 t2.insert_edge(3,0);
 t2.insert_edge(1,4);
 t2.insert_edge(0,2);
 t2.insert_edge(3,5);

 cout << t1.node_labelling();

 cout << t2.node_labelling();

 if (isomorphic(t1,t2))
 cout << "isomorphic" << endl;
 else
 cout << "not isomorphic" << endl;
}

g++ -O -o iso iso.cpp Topology.cpp; ./iso

The output is:
0 3 4 1 2 5
0 1 5 2 3 4
isomorphic

With the node permutations above
both matrices are:

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

The bijection is therefore:
0->0, 1->2, 2->3, 3->1, 4->5, 5->4

A similar program gives for:

the adjacency matrix:

0 0 0 1 1 1
0 0 1 0 1 1
0 1 0 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0

It is obviously not isomorphic
with the two others

How to construct an algorithm for isomorphism testing?

● First idea: transform both matrices through all possible
 permutations and compare. This would make 6!*6! = 518400
 cases to consider

● Better: transform every matrix individually to obtain the
 smallest representation w/r to lexicographic ordering. Only
 2*6! = 1440 cases to consider. 360 times faster!

● The algorithm used by the Topology class needs only 142
 cases and is thus still more than 10 times faster!

First, we need some definitions:

● a partition of a set V is a set of disjoint non-empty subsets of
 V whose union is V.

● an element of a partition is called a cell.

●

●

●

wesaythat1 isfinerthan2 ifeverycellof1 isa subset
ofsomecellof1 .wewrite1≤2.underthesameconditions2

iscoarserthan1 .

apartition isequitableifforeveryV1 ,V2∈ ,d v1,V1=d v2,V2
forallvi∈Vi .

  denotestheuniquecoarsestpartitionfinerthan .

An example:

Thecoarsestpartitionisalwaystrivial0={0,1,2,3,4,5,6 }
Apartitionintonodesofthesamedegreeis1={{0,6 }, {1,3,4,5 }, {2 }}
Thefinestpartitionisalwaysdiscrete2={{0 }, {1 }, {2 }, {3 }, {4 }, {5 }, {6 }}
Exercise: Convince yourselfthat 0= 1=2

It is clear that we will not obtain the same graph if we permute
nodes from different cells of an equitable partition.

If we can define an ordering of cells equitable partitions may
reduce the number of permutations in isomorphism testing!

Algorithm : Given a graph G=V , E , compute R G ,  , ∈ V the set of ordered paritions of V ,
where ∈ V and =W1, ... , WM⊆ .

1  :=
m :=1

2 if  is discrete or mM stop : R G ,  , =
W :=Wm

m :=m1
k :=1
{suppose =V1, ... , Vr at this point}

3 define X1, ... , Xs∈ V  such that for any x∈Xi , y∈Xj , d x , Wd y , W iff i j .
if s=1 go to 4
let t be the smallest integer such that | Xt | is maximum 1≤t≤s
if Wj=Vk for some j m≤ j≤MWj :=Xt

for 1≤ it set WM i :=Xi

for t i≤s set WM i−1 :=Xi

M :=Ms−1
update  by replacing the cell Vk with the cells X1, ... , Xs in that order

4 k :=k1
if k≤r go to 3
go to 2

RG, ,generatesin twocases:
1 =
2 ifthereissomeequitablepartition'whichiscoarserthan

and⊆suchthatforanyW∈',wehaveX⊆W
foratmostoneX∈∖

In our example graph the algorithm generates:

({0, 1, 2, 3, 4, 5, 6})
({0, 6}, {1, 3, 4, 5}, {2})
({0, 6}, {3, 4}, {1, 5}, {2})
({0, 6}, {4}, {3}, {1, 5}, {2})
({0, 6}, {4}, {3}, {5}, {1}, {2})
({0}, {6}, {4}, {3}, {5}, {1}, {2})

The idea of the algorithm determining a unique representation
for the adjacency matrix is:

● find the equitable partition starting from the trivial partition
● if it is discrete then there is nothing more to do
● if not permute the nodes within the cells and look for the
 minimal adjacency matrix

The last step can be further improved:

● at every step, we chose a cell and select a node to be placed
 before the nodes from the selected cell.
● we find the equitable partition
● if this partition is discrete, we have an allowed permutation

This procedure generates a tree of partitions (search tree)

An example with a non-trivial search tree:

The equitable partition is:
({0, 5}, {2, 3}, {1, 4})

whereas the generated allowed permutations:

0 5 3 2 4 1
5 0 2 3 1 4
5 0 3 2 1 4
0 5 2 3 4 1

It may also be interesting to compare topologies without permuting
the external nodes.

This can be done by taking a starting partition in which every
external node is in a single cell.

The topology class does this if we call the method
Topology::fix_external_nodes()

The same algorithms can be used to determine the symmetry group.
We use the permutations of the search tree and check whether
the adjacency matrix is left invariant. In our case:

Topology::node_symmetry_group():

0 1 2 3 4 5
0 1 3 2 4 5
5 4 2 3 1 0
5 4 3 2 1 0

Or the internal symmetry subgroup, when the external nodes are
not permuted:

Topology::internal_node_symmetry_group():

0 1 2 3 4 5
0 1 3 2 4 5

Exercises:

chose a node labelling
and suitably modify the
program iso.cpp for

are these graphs isomorphic?
what if permutations of external
nodes were not allowed?

find the symmetry and internal symmetry groups for

IVIV
● Graph generation
● Graphs and integrals

Basic ideas behind graph generation:

● generate adjacency matrices.
 the direction and ordering of edges is irrelevant.

● use the relation and start from nodes of
 degree 1 and 3.
 (an arbitrary node partition is also possible)

● allow for a specified number of nodes of degree 2.
 these will serve as propagator counterterm insertions.

● unless otherwise specified, reject disconnected graphs.

● insert the generated topologies into a set (fixing by default the
 external nodes).
 The C++ structure set<Topology> will reject isomorphic graphs.

n32n4=n12nl−2

Some storage consideration:

● in this basic algorithm storage requirements grow with the number
 of topologies in the output

● an example:

 6-loop 2-point function topologies with equivalent external nodes
 but without rejection of 1-particle-reducible cases

 899575 topologies generated
 ~500 MB storage used
 ~6 min (2 GHz Xeon machine partly occupied)

● conclusion: hitting limits of storage capacity occurs always later
 than hitting limits of the ability to subsequently evaluate the
 diagrams

Where is the problem?

● if we want to generate 4-loop 2-point function topologies the
 maximum number of nodes is 10 (8 nodes of degree 3)

● there will be raughly 10! = 3628800 different matrices
 for any graph

● as an improvement we can forbid permutations of nodes of
 different degree by fixing their numbering within the
 adjacency matrix. we would still have a slowdown factor of
 2!*8! = 80640

What would happen in the 7-loop theory?

● the vertex would have 4 degree 1 nodes and 8 degree 4 nodes, thus
 the slowdown factor of 4!*8! = 967680

4

First improvement: lexicographic ordering

● assign degrees to the nodes in ascending order

● define a partition of the nodes, such that cells of contain
 nodes of the same degree

● fill the adjacency matrix starting from the last node

● sort into descending order the elements of a column j of the
 adjacency matrix corresponding to nodes within a single
 cell of

● define by splitting cells of to contain nodes that have the
 same adjacency in the column j

Pn−1 Pn−1

Pj

Pj−1 Pj

Example: 3-loop 2-point function, no degree 4 nodes

● 49 topologies
● naïve estimate of the number of all matrices: 2!*6!*49 = 70560
● generated in reality: 36360
● with sorting: 801
● speedup: ~45

Second improvement:

● suppose that for a given node j there is a node k, with k > j, such
 that k and j belong to the same cell of .
 if the transposition of j and k would generate a lexicographically
 larger matrix, then the current matrix is rejected.

● note: the relation C⊂V×V, such that (j,k) ∈C if node j should be
 transposed with node k is a directed graph, the comparison graph

● this algorithm would generate different matrices only

● we simplify the test by checking only whether the column k after
 transposition is not greater than before transposition

Pk

Example: 3-loop 2-point function, no degree 4 nodes

● 49 topologies
● naïve estimate of the number of all matrices: 2!*6!*49 = 70560
● generated in reality: 36360
● with sorting: 801
● with comparison: 61
● speedup: ~596

Last thing to improve: reduce the number of disconnected graphs

#include <sstream>
#include "TopologyGenerator.hpp"

using std::ostringstream;
using std::cout;
using std::endl;

int
main()
{
 int count = 0;

#if 1
 TopologyGenerator generator(2, 2, OneParticleIrreducible);
#else
 vector<int> node_count(4);
 node_count[0] = 0;
 node_count[1] = 0;
 node_count[2] = 4;
 node_count[3] = 0;

 TopologyGenerator generator(node_count, EquivalentExternalNodes | OneParticleIrreducible | NoSelfEnergies);
#endif

 while (generator.next_topology())
 {
 ++count;

 Topology t = generator.current_topology();
 t.assign_momenta();
 t.print_edge_list();
 cout << endl;

 ostringstream name;
 name << "top" << count << ".ps";
 t.postscript_print(name.str());
 }
 cout << count << " generated topologies" << endl;
}

Graph isomorphism vs integral equality

● Are these two isomorphic? Are the associated integrals equal?

● Graph isomorphism testing is not always sufficient to decide of
integral equality

● A different algorithm is needed

● Basic idea: use momentum distributions

● Efficiency requires a non-trivial algorithm to be found in
 the Prototype class.

Literature:

● R. Diestel, “Graph Theory”,
 Springer-Verlag, New York, 2000,
 http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/index.html

● K. Mehlhorn, “Data Structures and Efficient Algorithms”,
 Springer-Verlag, EATCS Monographs, 1984,
 http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html

● B. D. McKay, “Practical Graph Isomorphism”,
 Congressus Numerantium 30 (1981) 45,
 http://cs.anu.edu.au/~bdm/nauty/

Exercises:

● how many graphs does one need to calculate the 7-loop β-function
 of a theory? (2- and 4-point functions, 1PI and equivalent
 external nodes)

● how many master 4-loop vacuum topologies are there? (only degree
 3 nodes, no self-energy insertions, 1PI)

● how many tree-level topologies with 8 external nodes are there,
 when the external nodes are equivalent? what happens if they are
 equal?

4

