Bunch length measurements at BC2 using coherent far-infrared radiation

TESLA Collaboration Meeting

DESY Zeuthen 21-23/1/2004
Oliver Grimm

1. Status of beam line at $B C 2$
2. Some illustrations of expected spectra

Layout of BC2 Infrared \& Optical Beam Line

Design of Beam Line

Beam pipes $\varnothing 260 \times 5$, over radiation protection wall $\varnothing 208 \times 4$. Projected sizes: Parabolic mirror Ø100, first flat mirror Ø177, remaining mirrors Ø108.

Features of Beam Line

- Prepared for Nitrogen flushing (probably from TOSYLAB to tunnel)
- Interferometer will also be included in Nitrogen shield
- Partly prepared for later evacuation to fore-vacuum
- Parabolic mirror mounted on rotation stage (remote controlled, to facilitate adjustment and to compensate offsets from nominal electron beam trajectory)
- Parabolic mirror focus can be moved by $+5 \mathrm{~cm} /-2 \mathrm{~cm}$ (manually)
- Large flat mirror angle adjustable (remotely)
- Small flat mirror angles in container manually adjustable (can also be moved within their planes)
- Crystalline Quartz window (z-cut, clear aperture Ø 60 mm)

Mirror parameters

- Parabolic mirror: $\varnothing 100 \mathrm{~mm}$ projected, Aluminium, 8λ, better at centre
- Large flat mirror: $\varnothing 250 \mathrm{~mm}$, Aluminium, 1λ
- Small flat mirrors: $\varnothing 152.4 \mathrm{~mm}$, Aluminium coating, $\lambda / 5$

Adjustment of mirrors

- Parabolic mirror focal point initially set to 5 cm from beginning of bending arc (not critical to the millimetre level)
- Laser beam guided backwards vertically down on parabolic mirror. Verticality adjusted with mechanical marks.
- Expanded laser beam ($\varnothing 50 \mathrm{~mm}$) used to check focal point
- Height and orientation of rotation plane adjusted to nominal beam plane using several marks by survey department on the tunnel wall and by turning of the parabolic mirror
- Optimum angular position of parabolic mirror determined by maximizing signal in operation, flat mirror adjustment with optical synchrotron radiation

Status of beam line construction

- Double I-beam carrier system ready
- Aluminium beam pipes in hand ($\varnothing 260$ black anodized, $\varnothing 208$ grey anodized, will be painted black)
- Mirror chamber parts, flanges etc. currently machined or already in hand (will be black anodized or painted as far as practical)
- Carrier system including large mirror chamber planned to be installed first week of February (or later if closing of tunnel roof is delayed)
- Remaining components mid February
- Small flat mirrors in hand
- Delivery of parabolic and large flat mirror beginning of March (??) (company tries to deliver earlier)
- Construction by Otto Peters, Manufacturing supervised by Mathias Böttcher (ZM31)

Some components

Spectrum of incoherent synchrotron radiation at BC2

- $\mathrm{R}=1.6 \mathrm{~m}\left(130 \mathrm{MeV}, 18^{\circ}\right.$, 0.27 T)
- Single electron, circular motion

$$
\begin{aligned}
& \left(\frac{\mathrm{d} P}{\mathrm{~d} \lambda}\right)_{0}=\frac{\sqrt{3} e^{2} c}{4 \pi \varepsilon_{0}} \frac{\gamma \lambda_{\mathrm{c}}}{R \lambda^{3}} \int_{\lambda_{\mathrm{c}} / \lambda}^{\infty} \mathrm{K}_{5 / 3}(x) \mathrm{d} x \\
& \lambda_{\mathrm{c}}=\frac{4 \pi R}{3 \gamma^{3}}
\end{aligned}
$$

lambda

Bunch form factor (1-dimensional)

$$
F(\lambda)=\int e^{2 \pi i z /} \lambda N(z) \mathrm{d} z, \quad \lim _{\lambda \rightarrow \infty}|F(\lambda)|=1, \quad \lim _{\lambda \rightarrow 0}|F(\lambda)|=0
$$

Longitudinal bunch shape $\mathrm{S}(\mathrm{z})$

Absolute value of form factor

see: G. Geloni et al., DESY 03-031 (March 2003)

Resulting total synchrotron radiation spectrum

$$
\left(\frac{\mathrm{d} P}{\mathrm{~d} \lambda}\right)_{\text {total }}=\left(\frac{\mathrm{d} P}{\mathrm{~d} \lambda}\right)_{0} \cdot\left(N+N(N-1)|F(\lambda)|^{2}\right)
$$

,Typical' chamber cut-off for 16 mm vacuum chamber height (see, e.g., R.L. Warnock, SLAC-PUB-5375 (November 1990))

$$
\lambda_{c u t}=2 h \sqrt{\frac{h}{R}} \approx 3.2 \mathrm{~mm}
$$

Chamber cut-off function

Calculated for circular, ultrarelativistic motion with bending radius R in a vacuum chamber of height h with infinite, perfectly conducting chamber walls.

$$
x=h \cdot \sqrt[3]{\frac{(2 \pi)^{2}}{\lambda^{2} R}}
$$

from: M. Dohlus, T. Limberg, Nucl.Instr.Meth. A407, 278(1998)

Total synchrotron radiation spectrum including chamber cut-off

- Existing Martin-Puplett Interferometer: (0.1-few(?)) mm
- Absolute power hard (impossible?) to measure, need to rely on shape
- Finite magnetic field (edge effects) not taken into account
- Beam transport line needs to be accounted for (GLAD?)

1. Need to access shorter wavelengths
2. Full, independent bunch shape reconstruction (Kramers-Kronig analysis) certainly difficult
