

Measurement of momentum spread and bunch length at the Photo Injector Test facility at DESY Zeuthen, PITZ

- Goal and setup
- Operation principle of the photo injector
- Longitudinal laser beam property
- Momentum measurement
- Beam longitudinal distribution
- Summary

D. Lipka, for the PITZ collaboration, DESY Zeuthen

Goal and setup

Optimizing: momentum spread and bunch length of the electron bunch from the photo injector

Bunch length measurement setup

Momentum measurement setup

Operation principle

• energy at exit of gun: ~5 MeV

Accelerating field:

Longitudinal laser pulse property

An important component of the photo injector: photo cathode laser for the production of the electron bunch at the photo cathode The longitudinal shape of laser beam is changed:

Inhomogeneous space charge

homogeneous space charge density

Momentum measurement: Gauss

- Measurement conditions:
- Laser shape: Gaussian
- Maximum charge 1.1 nC at cavity exit
- Solenoid current 270 A ($B_{max} = 159 \text{ mT}$)

- Low ϕ_0 : field low at t = 0 \rightarrow space charge determines momentum spread
- High ϕ_0 : variation of RF determines momentum spread

Measurement compared to simulation for different ϕ_0

D. Lipka, for the PITZ collaboration, DESY

Momentum measurement: flat-top

Measurement compared to simulation for different ϕ_0 Measurement conditions: j14000 년20000 년 18000 Einh. 6000ia ⊡12000 5000 16000 <u>e</u> a10000 ଅ14000 4000 ₩12000 ntensität, 0008 gt .≝10000 3000 ntensit 4000 Laser shape: flat-top Intensi 8000 2000 6000 4000 1000 2000 2000 4.5 4.5 4.5 4.6 4.7 4.6 4.7 4.8 4.9 4.6 4.7 4.8 4.8 Solenoid current 280 A ($B_{max} = 165 \text{ mT}$) p, MeV/c p, MeV/c p, MeV/c (b) $\phi_0 = 26, 5^{\circ}$ (a) $\phi_0 = 16.5^{\circ}$ (c) $\phi_0 = 31, 5^{\circ}$ charge 1.0 nC 14000 نے .20000 . 8000 1007 18000 <u>.</u> 12000 ш16000 highest mean 6000 <u>ਜ</u>਼10000 Гē. 12000 5000 8000 ntensität, momentum ntensität, g10000 4000 6000 8000 3000 6000 4000 2000 4000 2000 2000 1000 4.5 4.7 4.8 4.6 4.9 4.5 4.6 4.7 4.8 4.9 **4.2** 4.4 4.6 4.8 ĂΔ p, MeV/c p, MeV/c p, MeV/c simulation: cylinder symmetric space (d) $\phi_0 = 36, 5^{\circ}$ (e) $\phi_0 = 41, 5^{\circ}$ (f) $\phi_0 = 51, 5^{\circ}$ charge .20000 data: not cylinder symmetric space **둔**18000 **ⅲ**16000 charge ธ่14000 12000 10000 8000 6000 4000 2000 Higher ϕ_0 : simulation reasonable agreement with data 4.2 4.4 4.6 4.8 p, MeV/c (g) $\phi_0 = 56, 5^{\circ}$

Low ϕ_0 :

Momentum measurement: comparison

Mean momentum

Phase with smallest momentum spread with flat top laser pulse nearer to phase with highest momentum

Field amplitude and maximum phase chosen such that simulation matches the measurement

Experimental setup

Longitudinal distribution of photon beam

- One photon pulse has low intensity: superimpose pulses
- Check: jitter
- 100 single bunches:
 - RMS of mean <u>0.99 ps</u>
 - streak camera resolution 1.8 ps
 - bunch length σ = 27.9 ps

Dispersion: elongation of photon beam

Transmission filters with different bandwidth λ_{B}

Time resolution of different radiators: Compare Cherenkov effect in aerogel with optical transition radiation (OTR)

- Cherenkov effect: radiator thickness influences time resolution
- OTR: photons are produced on surface, no contribution to time resolution
- Plot: tail due to second transmission peak (420 nm) of the interference filter
- Intensity differs by a factor of 1000
- Both distributions show same shape → small time resolution from aerogel

DESY

Beam longitudinal distribution

Measurement conditions:

- same as for the momentum distributions: 1 nC charge fixed, flattop laser pulse
- main solenoid, quadrupole triplett and steerers used to obtain highest light intensity

Measurement compared to simulation for different ϕ_0

Low ϕ_0 : focusing not successful

High ϕ_0 : beam can not be focused (large beam momentum spread)

Bunch length

Bunch length in <u>RMS 90 %:</u> cut out the tails with < 10 % max. intensity

- Low ϕ_0 : higher space charge
- High ϕ_0 : variation of RF elongates the bunch
- Minimum bunch length: FWHM = (21.04 ± 0.45stat ± 4.14syst) ps
 = (6.31 ± 0.14stat ± 1.24syst) mm
 at same phase of 26.5 deg. where the minimum momentum spread is obtained

Summary

Momentum spread and bunch length are important issues for the optimization of a photo injector

Study them has been done at PITZ:

- Longitudinal laser shape changed from Gaussian to flat-top
- Measurement of momentum distributions for different phases (flat-top pulse):
 - momentum spread decreases by a factor of 2
 - phase with smallest momentum spread is closer to the phase with highest energy gain
- Used aerogel to measure the longitudinal distributions of electron beam
- Small jitter of the injector and experimental setup measured
- Dispersion between radiator and streak camera obtained → use of transmission filters is necessary
- Compared longitudinal distribution from Cherenkov-effect (Aerogel) with OTReffect successful
- Bunch length for different phases is measured
- Minimum bunch length and minimum energy spread at the same phase

Outlook

- Dispersion elongates photon bunch between radiator and streak camera, to avoid dispersion use of reflective optics for the optical transport system including streak camera input optics
- Measurement system for the measurement of correlation between momentum and longitudinal position of electrons in bunch in production (complete longitudinal phase space)
- PITZ will be extended by a booster → electron energy up to 30 MeV, makes it possible to use OTR-screens as radiator for measurements of the longitudinal distributions of electron bunches