Beam Monitoring from Beam Strahlung

work mainly by summer students

- Gunnar Klämke (U Jena, 01)
- Marko Ternick (TU Cottbus, 02)
- Magdalena Luz (HU Berlin, 03)
- Regina Kwee (HU Berlin, 03)

Achim Stahl

DESY Zeuthen

21.Jan.2004

TESLA: small bunches (5nm x 550nm x 300µm) huge electric/magnetic fields

Particles accelerated by electric field

 \rightarrow creation of photon radiation (beamstrahlung)

Simulation of collisions by guinea-pig

Creation of e⁺e⁻ pairs by photon-photon interactions (2nd order effect, e⁺e⁻ << γ s)

Simulation of collisions by guinea-pig

Tracking of particles into the forward region (e⁺e⁻ confined by magnetic field of detector)

Tracking by simple stand-alone program

Creation of signals in detectors (LCal + Collimators?)

 \rightarrow fast diagnosis + offline analysis

Over-simplified detector simulation

- detectors subdivided into cells
- sum energy impact on cells

- 3 potential sources of information
- energy-distribution of pairs
- number-distribution of pairs
- distribution of photons

Detector

TDR design

Detector Technology

R&D Project: TESLA Forward Calorimeters

- Univ. of Colorado, Bolder
- AGH Univ. Cracow
- Inst Nucl Phys, Cracow
- Joint Inst Nucl Res., Dubna
- UC London
- NSEC, Minsk
- Inst Phys., Prague
- Inst HEP, Protvino
- Univ. Tel Aviv
- DESY Zeuthen

most promising technology:

Sandwich CalorimeterTungsten Absorber

Diamond Sensors

Detector

photons \rightarrow beam pipe pairs:

- 100 TeV/BX total
- 20 TeV/BX in detector

Example: Observables

- total energy
- first radial moment
- direction of thrust axis
- ♦ $E(ring \ge 4) / E_{tot}$
- ★ (A + B) (C + D)★ (A + C) (B + D)

Current Analysis Concept

Beam Parameters

- determine collision
- creation of beamstr.
- creation of e⁺e⁻ pairs

guinea-pig

Observables

 characterize energy distributions in detectors

analysis program

Solve by matrix inversion (Moore-Penrose Inverse)

Example: Slopes

beam parameter i

Analysis Problem

bunch rotation in mrad

1st Results: Single Parameter Analysis

	nominal	our precision	Beam Diag.
Bunch width x Ave.	553 nm	2.1 nm	~ 10 %
Diff.		3.8 nm	~ 10 %
Bunch width y Ave.	5.0 nm	0.2 nm	Shintake
Diff.		0.6 nm	Monitor
Bunch length z Ave.	300 µm	7.9 µm	~ 10 %
Diff.		3.7 µm	~ 10 %
Emittance in x Ave.	10.0 mm mrad	None	?
Diff.		1.2 mm mrad	?
Emittance in y Ave.	0.03 mm mrad	0.002 mm mrad	?
Diff.		0.004 mm mrad	?
Beam offset in x	0	50 nm	5 nm
Beam offset in y	0	1 nm	0.1 nm
Horizontal waist shift	0 µm	None	None
Vertical waist shift	360 µm	40 µm	None

1st Results: Two Parameter Analysis

Example: horizontal beam size

Sngl Param Resao: 2.1 nm

horizontal beam size

1st Results: Multi Parameter Analysis

σ_{x}	$\Delta \sigma_{x}$	σ_{y}	$\Delta \sigma_y$	σ _z	$\Delta \sigma_z$
0.4 %	0.7 %	4.9 %	11 %	2.7 %	1.2 %
0.4 %	0.7 %	4.8 %	11 %	2.8 %	1.3 %
2.1 %	5.7 %	9.4 %	8.4 %		
		3.6 %	12 %	3.9 %	0.9 %
38 %	82 %	360 %	2000 %	42 %	370 %

First Look at Photons

-0.4 Шад

E_{tot}=3434.77 TeV

 $\sigma_{\rm X} \sigma_{\rm \overline{y}} = 6530 \, \text{mm}$

nominal setting (550 nm x 5 nm)

Next Steps:

Test on realistic beam simulation
Include photons from beamstrahlung
Input on the detector design
Think about hardware implementation

