XFEL Optics Considerations

Winni Decking TESLA Collaboration Meeting Zeuthen 01/04

Optics Issues

Injector Bunch compressor 1 Diagnostics 1 Bunch compressor 2 Diagnostics 2 Orbit Feedback 1 Collimation 1

Linac Low energy extraction

Diagnostics 3 Collimation 2 Orbit Feedback 2 Fast Beam switch Beam transport to Undulator Collimation 3 Orbit Feedback 3 Undulator optics Beam transport to Dump

EGS Simulations for Ti Spoiler

- Spoiler has to withstand 100-200 bunches
- Number of bunches for instantaenous temperature rise < 1670° C
- TDR supplement: $\beta \approx 350 380$ m for Ti spoiler
- Other spoiler material (graphite $T = 3520^{\circ} C$)?
 - Resistive wall wake an issue ??

Collimation – TDR Layout

Optimized for:

≈ 200 bunches impact on spoiler (time to switch of gun)
Diagnostics within collimation
Large energy acceptance and bandwidth (3 % resp. 9 %)

Too long for XFEL Alternatives:

Learn from LC designsRevive emergency dump

© N. Golubeva, V. Balandin

LC like Collomation System (R.B.)

Mismatched 90 deg FODO leads to large betas

Combine longituidnal and transeverse collimation

Sextupoles for chromatics correction

Bandwidth ???

 $p_{N} p_{0} [*10^{**}(-3)]$

-)**01*] 04 po

[*I0**(-3)]

 $p_{V} p_{o}$

-)**01*] od /vd

3)]

Fast Beam Switch

Switch Yard – TDR Layout

Optimized for:

- large energy acceptance
- 50 GeV max. energy
- Ellerhoop site constraintsIncludes orbit FB

Review:

•20 GeV

•Switching device

•2nd stage

© N. Golubeva, V. Balandin

TDR Layout

Whats next

- Work on collimation/fast switch section
- Orbit feedback by SLS
- Beam distribution ok for time being
- Work on transverse jitter budget

Beam Jitter - Tolerances Undulator

- From SASE process:
 - -0.1σ (whole undulator)
- User requirements
 - -0.1σ (last part of undulator)
 - pointing stability ?

Jitter Sources

- Laser jitter
- Coupler kicks
- Wakefields
- Energy jitter
- Charge jitter
- Ground Motion
 - • •

After FB:

- Feedback
- Switch
- Ground Motion

Before FB:

Jitter Sources - Ground Motion

Watch out for girder/support enhancement

Jitter Sources - Ground Motion

- With 70 nm (rms) quad movement about 0.05σ at linac end
- 1:1 transfer ground to quad assumed, may need redesign of present quad mounting in cryostat
- Measurements of quad vibration in cryostat not yet conclusive
- Additional jitter in undulator and switch yard, first estimate gives 0.02σ