Status of electro polishing

At DESYA.MatheisenAt Saclayinformations supplied by C.Antoin

See also contributions of E.Palmirie and C.Antoin to the CARE meeting this afternoon and lab talks of yesterday

Part 1 status at Saclay Part 2 Status at DESY

Saclay's Program to W5-1 EP of monocell

Optimization of the process on samples
Built up of a simplified EP facility (monocell)
Adapt the parameters from sample to monocell facility, compare EP and FNP

Note: this program takes place in a more general program of the lab that aims to determine the origin of the quench vs surface treatment

Samples facilities

- standard EP reactor
- rotating sample holder =>
 - same anode cathode distance
 - reproduces cavity rotation and sequential immersion in the polishing bath

Rotating sample holder with el. contact

General Program: cavities /samples

- Issue : E_{acc} max ~ 50 à 60 MV/m !?
- CAVITIES : RF Test
 - BCP vs EP
 - Localisation of quench Already in progress
 - Morphologic analysis Already in progress
 - SAMPLES : Analysis
 - Contamination inside $\lambda_L = f(surf. treatement)$ Already in progress
 - Reaction mecanismes during etching Already in progress
 - Grain boundary resistivity Already in progress
 - Surface morphology Already in progress
 - Thermal transfert Already in progress

EP : optimization of process

Improvement of EP solution

- Optimization of electric parameters (in progress)
 - Anode/cathode surface ratio
 - Anode/cathode distance

(to be started in 2004)

- Bath composition (close from present composition)
- Aging of the bath : determination of limits of utilization Adjusting bath composition in time (filtration, acids addition)
- Role/prevention of impurities and dissolved gases in the bath
- protection against hydrogen
 - identification of contaminating steps (confirmed)
 - Cathodic/anodic protection (failed)

Part 2 electro polishing at DESY

Parameter list

single cell nine cell	Surface area	1460 cm2
	Surface area	8820 cm2
Filling level	$\sim 55\%$ of volume	
Surface cove → active sur → active sur	red by acid rface single cell cavity rface nine cell cavity	190 of 360 deg 771 cm2 4655 cm2
Power supply Voltage (reg Current (reg	v ulated) ulated)	1 – 40 V 1- 1500 A

Cavity treatments done at the DESY EP facility in 2003

Cavity	Date	voltage	Eacc before ep	Eacc after EP incl. 120 C heating
1B8	08.04.03	18	28,4	37,9
1S2	22.05.03	18	31,4	40
1B12	04.06.03	18		
1B12	17.06.03	18		Accident during HP rinse
A14	19.8.03	15	6,38	Test dummy
Ac 78	21.8.03	16	15,4	24
P-1	26.8.03	16	10,5	Q decease
AC 70	7.10.03	17	19	39,5
AC80	06.11.03	17	new	Parameter study
AC 80	12.11.03	17		دد
AC80	18.11.03	17		
P-1	16.10.03	17	10.5	Waiting for restart EP

Removal and field profile

cavity	date	Removed material Kg	Removal equator (Rf measure ment) µm	Removal iris (Rf measure ment) µm	Removal (by weight) µm	Field flatnes s %	Treat- ment Time Min	Voltage Volt
A14	20.8.03	0,17	16	23	22	97	60	15
AC 78	21.8.03	0,31	32	62	41	94	180	16
P-1	26.8.03	0,59	43	130	78	90	180	16
AC 70	6.10.03	?	?	?	?	?	120	17
P-1	16.10.03	0,4	35	69	53	93	120	17
AC 80	6.11.03	0,75	86	142	99	81	240	17
AC 80	12.11.03	0,53	52	95	70	90	180	17
AC 80	18.11.03	0,32	35	59	42	93	120	17

Example of field flatness change

MODE SPECTRUM MEASURED ON TUNING MACHINE

Cavity AC80 Measured on 06-Nov-2003 14:35 Field Flatness [%]: 80 Remark: without tube

MODE SPECTRUM MEASURED ON TUNING MACHINE

Cavity AC80 Measured on 18-Nov-2003 12:08 Field Flatness [%]: 93 Remark: without tube 120 Min

MODE SPECTRUM MEASURED ON TUNING MACHINE

Cavity AC80 Measured on 12-Nov-2003 14:18 Field Flatness [%]: 89 Remark: without tube 180 min

MODE SPECTRUM MEASURED ON TUNING MACHINE

Cavity AC80 Measured on 06-Nov-2003 14:35 Field Flatness [%]: 80 Remark: without tube 240 min

Data						
Cavity	Voltage V	Current density A/dm ²	Removal rate µm /min	Average temperature C		
1B8	18	4,7	??	20,1		
1S2	18	4	??	24,15		
1B12	18	6,6	??	29,2		
1B12	18	5,7	??	26,95		
A14	15	4,71	0,37			
AC78	16	5,38	0,23	31		
P-1	16	4,95	0,43	30		
AC70	17	5,59	??	29		
P-1	17	5,98	0,44	29,8		
AC80	17	5,96	0,41	30,9		
AC80	17	5,31	0,39	28,6		
AC80	17	4,95	0,35	28,1		

EP data of cavity P-1 26.8.03

EP data of cavity AC 80 5.11.03

Kurve	Variablenanbindung	Wert	Datum/Zeit
Strom	Netzteilwerte\Strom	216.58	05.11.2003 08:08:38.870
T3: WT 1 Ablauf	Temperatur\T3_Waermetauscher1_Ablauf	18.3	05.11.2003 08:08:38.870
T4: WT 2 Zulauf	Temperatur\T4_Warmetauscher2_Zulauf	22.1	05.11.2003 08:08:38.870
Q1: Säuredurchfluss	Durchfluss\Q1_Saeuredurchfluss	7.35	05.11.2003 08:08:38.870

EP data of cavity AC 70 7.10.03

Heat exchanger started

Test result of AC 70

AC 70 recovered from 19 MV/m to 39.5 MV/m after EP at DESY

Assembly / dismount cavity on EP bench

Fixed geometry of ep bench

Heat and acid distribution needs head 1+2 in horizontal plane Electrode has always to be covered by acid (safety !!) For regular material removal

a constant distance of electrode to cavity surface is required

Consequence Cavity has to be tuned to geometrical axis Cavity has to be aligned to electrode axis Electrode has to be horizontal Cavity has to be aligned to frame axis

Alignment of cavity frame and Current transfer disc to bench

Precision of alignment +- 2 mm Cavity axis to disc axis

Data of alignment

Reproducibility of electrode axis +-1mm on 1.5 m

Actually alignment and installation takes about 1 day (Cavity to frame/ frame to disc/ disc to bench) and leaktest last for 2 days

Demounting sequence

BCP		EP	
Rinse inside BCP stand	(40 Min)	Rinse inside Ep stand	(2 h)
Dismount from BCP stand	d (5 Min)	Dismount from Ep stand	(1 h)
Change flanges	(15 Min)	Clean outside by car wash / ultra soun	ıd (1 h)
Rinse to 18Mohm cm	(30 Min)	Demount EP head / driving ring	(30 Min)
Dismount flanges	(1 Min)	change flanges	(15 Min)
Total time	1h 31 Min	Rinse to 18 Mohm cm	(30 Min)
1 st HP rinse		Demount flanges	(1Min)
		Total time	5h 16 Min
		1 st HR rinse	

Conclusion after start up of the DESY Ep

INFRASTRUCTURE Ep + 6 times HP rinse showed very low field emission at high gradients Removal rate between 0.35 and 0.45 µm/min 2 times higher removal on iris than on equator Field profile seems to be tilted by 0.5 to 0.6 % per 10 Minutes Field profile tilt seems to have one major direction (cell 1) EP shows strong dependency on current and acid temperature Warm up of acid take 1 h (180 l) (bad for short treatments)

PROCESS

Ep process parameters seem to be in the right range for high gradients It looks like a wide range of parameters are acceptable (15-18V) Ep facility infrastructure seems to be reliable Assembly of cavity to Ep stand very time consuming Time between Ep and first HP rinse longer than after BCP Up to 10gr Niobium /l acid no reduction of removal rate was seen

What did we do since October 03

We have had some experiences not correlated to our research

We had a problem with one of the ep acid vessels

