

SNS Cryomodule Production At Jefferson Lab

J. Mammosser, Peter Kneisel

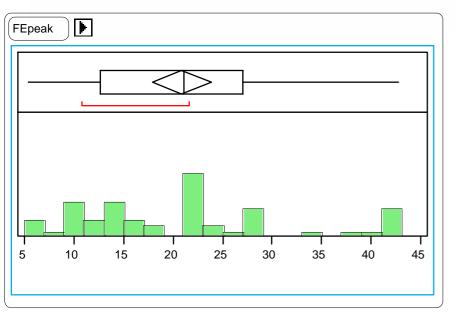
- JLab Production Requirements
- Difficulties in Qualifying Cavities
- Process Review and Findings
 - Procedures and Process Facilities

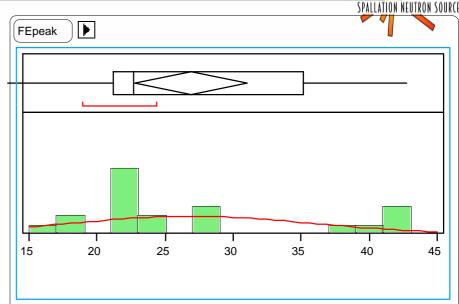
Outline

- New Process Sequence
- Current Performance
- Remaining Tasks For High Beta Cavities
- Conclusion

JLab Production Requirements

- Medium Beta Cryomodules
 - Produce 11 strings of 3 cavities each
 - Couplers
 - 50 ohm
 - 50KW average power
 - Peak Power 550KW @ 1.3 ms 60Hz
 - Cavities
 - Beta = 0.61, 805 MHz
 - Epk/Eacc = 2.71, Bp/Eacc = 5.72 mT/(MV/m)
 - R/Q = 279 ohms
 - VTA Qualifying Gradient Eacc >10 MV/m @ Q- 5E9, 2.1K

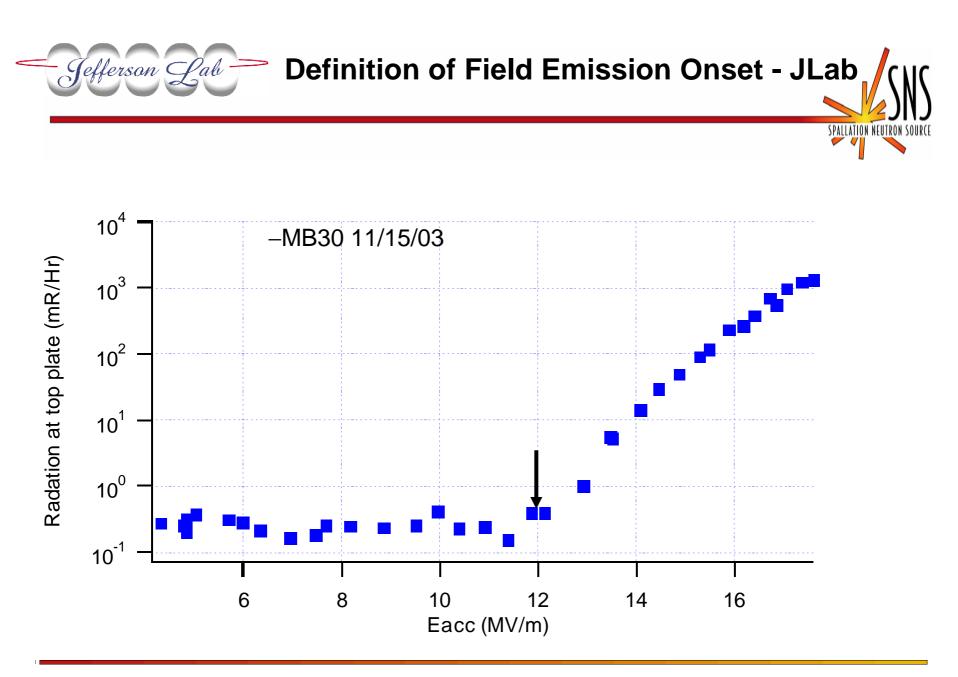




- High Beta Cryomodules
 - Produce 12 strings of 4 cavities each
 - Cavities
 - Beta = 0.81, 805 MHz
 - Epk/Eacc = 2.19 Bp/Eacc = 4.72 mT/(MV/m)
 - R/Q = 483 ohms
 - VTA Qualifying Gradient Eacc >16 MV/m @ Q- 5E9, 2.1K

-MB VTA Cavity Performance - Epk @ FE onset (MV/m)

All Vertical Tests

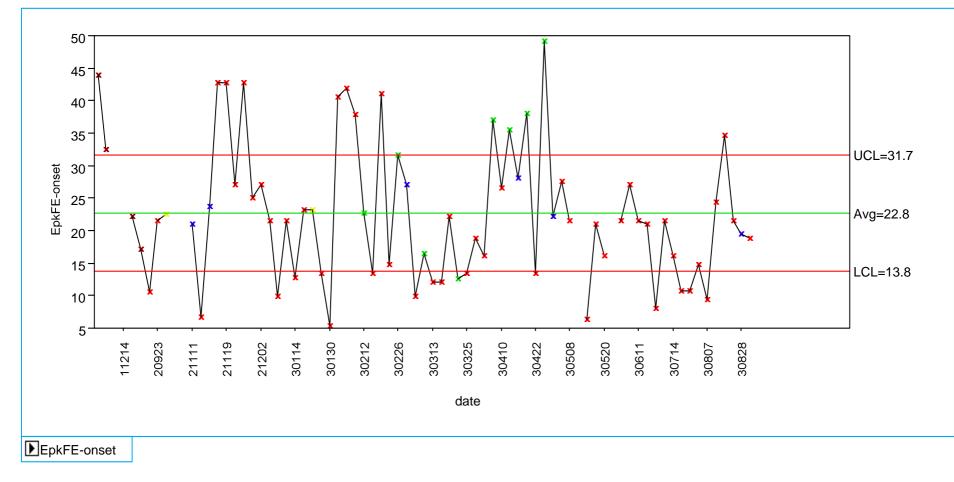

N – 51

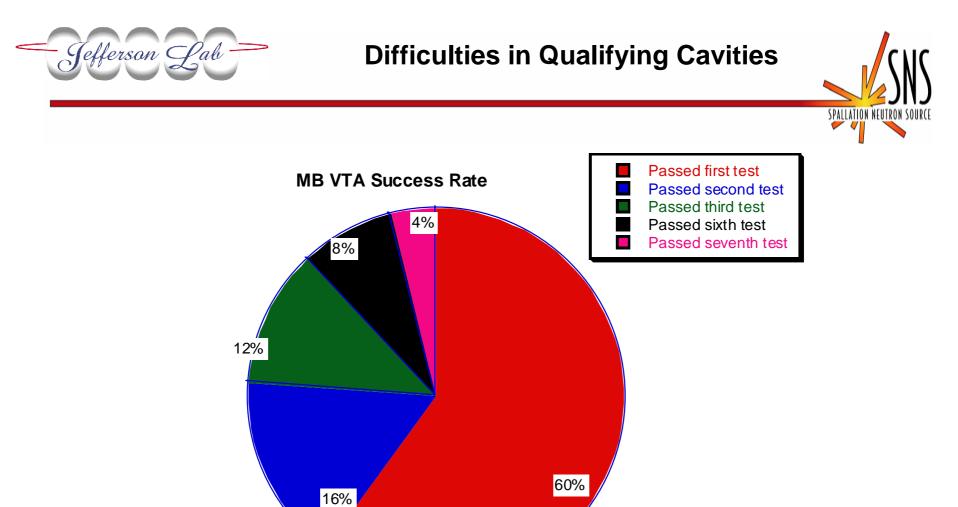
Mean – 20.94

Std Dev – 10.46

Qualified for String Assembly N – 21 Mean – 26.94

Std Dev – 8.74





Field Emission Onset Chronologically

SPALLATION NEUTRON SOURCE

VTA Test Data All Cavities

SPALLATION NEUTRON S

- JLab held an internal review September 15th 2003
- October 15th 2003 SNS held an external review of cryomodule production at JLab
 - External review team consisted of the following:
 - Helen Edwards, FNAL Chair
 - Peter Kneisel, Jlab
 - Hassan Padamsee, Cornell University
 - Yanglai Cho, ANL
 - Carlo Pagani, DESY-TESLA/ INFN
 - Axel Matheisen, DESY
 - Lutz Lilje, DESY
 - Detlef Reschke, DESY

Process Review and Findings

SPALLATION NEU

- Additionally:
 - Norbert Holtkamp and Carl Strawbridge, SNS
 - JLab Management and staff
- The focus of the review was to identify possible improvements to procedures to increase cavity qualification rates
- Special attention to existing procedures, facilities and comparison to DESY TESLA procedures identified many areas of possible improvement.
- A general review of what was known about pushing out field emission was also very constructive.

	Receiving Inspection
4	Cavities moved into testlab
1	receiving area
2	Initial inspection of cavities
3	Cavity is moved into QA lab
4	Mechanical inspection
	Cavity is moved up to RF
5	tuning area
6	RF Inspection

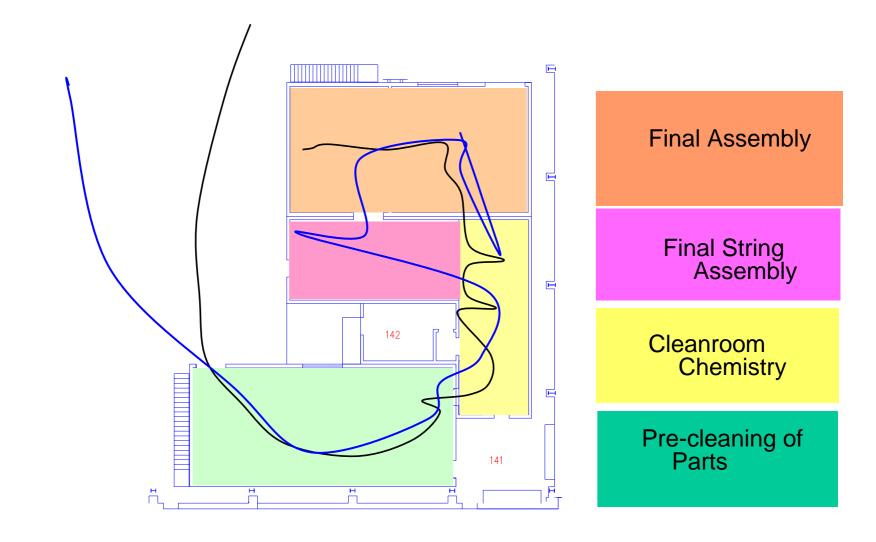
- Find more info on Accel's process
- No internal inspection performed

	Heattreatment
7	Cavity is moved to chemroom
8	Cavity is Degreased in US
9	Cavity is moved to RF tuning area
10	Insertion into the furnace
11	Furnace run

- Rinse to Resistivity and etch before HT
- Drying after degreasing
- Should change to a liquid detergent vs powder

Has not been implemented because all MB cavities were already heattreated , will happen on the HB cavities. We are prepared for the change

	Helium Vessel Welding
12	RF tuning
13	Cavity is moved towelding area
14	Component setup and alignment
15	Tack welding completed
16	All Welds are completed
17	Field flatness measurement
	Cavity is moved to
18	cryomodule assembly area
19	Leak Test of vessel


- Remove plastic caps and use metal seals
- Determine frequency by passband modes, seal cavity when possible

Again all MB and some HB were already welded so this will be implemented on the HB

Cleanroom Facility

Vertical Test Qualification
moved into chemroom on
transfer cart
Moved to passthru and cavity
connected to lift straps
Inserted into Ultrsonic tank
using overhead hoist
Ultrasonic 1 hour with DI and
Alconox
Cavity removed from US tank
Cavity rinsed with DI water
Cavity placed back on
transfer cart
Cart pushed into cleanroom
passthru
Lift cart moved to cavity and
connected and removed
from transfer cart

Two step rinsing, ultrasonic degreasing + flowthru

SPALLATION NEUTRON S

Overflow ultrasonic + filtering

Move to cleanroom sealed

Improvements to degreasing were made – DI degreasing open then repeated with second DI no soap and improved rinsing, followed by drying in cleanroom ---next step is to install resistivity monitoring and flow thru

lefferson Pab

Cavity moved to open area
and flange hardware
installed
Cavity inserted into cabinet
and acid connections made
Water leak test performed
Cavity Process Program
Started
Acid mixed and filtered 15-30
minutes, nitrogen leak test
Acid flows thru cavity (20um)
Acid drains
DI Water rinse for 3 minutes
Three fill and dumps with DI
water
Flange hardware removed
DI water rinse of flanges

(efferson Jab

More chemistry 100um

Waste acid after 10g/L

100um added and acid wasted after 15g/L , all string chem new acid

SPALLATION NEUTRON S

Increase fill/dumps & follow with a flowthru rinse to pH, transfer to HPR wet

Now 10 Fill & Dumps minimum (pH), flanges changes, flow thru to 5-6M ohm cm

40 Cavity moved to HPR cabir Cavity inserted into cabine 41 and aligned	
	•
42 HPR Program Started	
Pump starts and wand and	
43 table move	
Wand moves up and down	
44 and is repeated n loops	
45 Cavity drains overnight	
Cavity flanges blanked all	
46 but top	
47 Lift cart attached to cavity	
Cavity is removed from	
48 cabinet	
cavity is transfer to short	
49 mast cart	
Cavity is moved to Class 10)
50 area	
51 Cavity top flange assemble	d
Cavity probe flange	
52 assembled	
Cavity HOM flange	
53 assembled	

Total time 4 hrs, wand movement top to bottom, check effectively & duration

SPALLATION NEUTRON S

Cleanroom air top only, filtered nitrogen purge

Optimize nozzle size, position

Transfer to Class10 immediately after HPR & blank

Dry overnight

HPR time was increased X4

Nozzle optimization underway – fan jet best

Wet delivery to HPR

Immediate removal blank and dry over night

ssembled
Jed
k to the
to the
HPR
started
nd and
ldown
ops
blanked
n cabinet
short
Class 10
_

Nitrogen cleaning of hardware

Horizontal drying

2x HPR w/drain in between

Drain by flipping then dry overnight

Evacuate & isolate &move out of cleanroom, assembly to stand

Nitrogen cleaning of parts performed No Horizontal drying attempted No flipping but dry overnight Evacuation and isolation in cleanroom

	Cavity is moved into vertical
69	attachment room
	Cavity vacuum connection is
70	made
71	Vacuum pump is started
	Cavity is isolated and cold
	trap removed from rough
72	pump line
	Vacuum pump is started,
73	pumps over night
74	Leak test of cavity and stand
	Cavity moved into VTA
75	parkinglot
	Cavity vacuum is
76	reestablished
77	Cavity HOM 's are tuned
78	Cavity is moved into dewar

Clean teststand

Cavity isolated from teststand?

SPALLATION NEUTRON S

Stop processing at sigh of FE

Surface resistance during pumpdown

Passband Q vsE

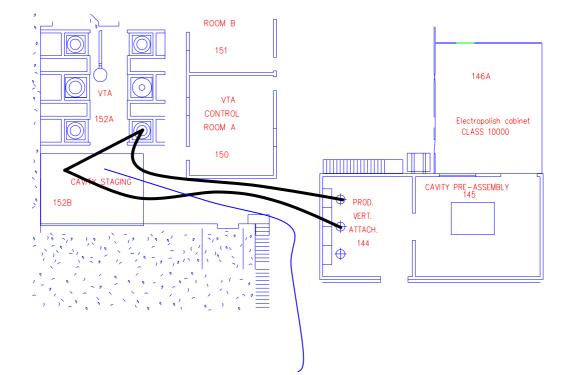
No HOM probes

High Power Connectors

Cavity isolated, stop at FEonset, some surface resistance at pumpdown

No HOM probes, standard cables

79	Dewar is qualifed
	Dewar is cooled down and
80	filled
	Dewar is topped off and
81	pumped
82	Cavity is RF tested
83	Dewar is warmed up
	Cavity is moved back into
84	cleanroom
	Cavity is letup to nitrogen
85	and disassembled


Backfill with N2 in a clean way

Backfill no longer on stand and in a clean way

Vertical Test Facilities

- Review identified process changes that could improve performance
 - Additional rinsing after chemistry and for HP rinsing
 - JLab was HP rinsing a factor of two less for the surface area of these cavities
 - Keeping the cavity surface wet between chemistry and HPR steps
 - identified by DESY as important to reduce FE
 - Allowing the cavity surface to dry between HPR steps
 - dry surfaces are less likely to adhere particulates from subsequent procedures

- Adjust HPR head to increase the number of nozzles and reduce the nozzle diameter to increase impact force
 - Jlab's HPR works well on small diameter structures and was not optimized for these cavities
- Isolate cavities from test stand during RF testing
 - This reduces the possibility of cross contamination from the test stand
 - Back fill cavity after testing not through test stand
- Flow thru rinsing added during degreasing steps
 - Provides a more controlled way to ensure it clean
- Use fresh acid for final processing <10g/L Nb

Vertical qualification Sequence

- Degrease - move to dry in Class 10

-Chemistry 100um , followed by 10 fills and dumps, rinse to 5 M ohm cm, wet transfer to HPR

-HPR 2 x 2 hours, 1200PSI drain in between, transfer to Class 10, dry overnigh

-Assembly probes & flanges

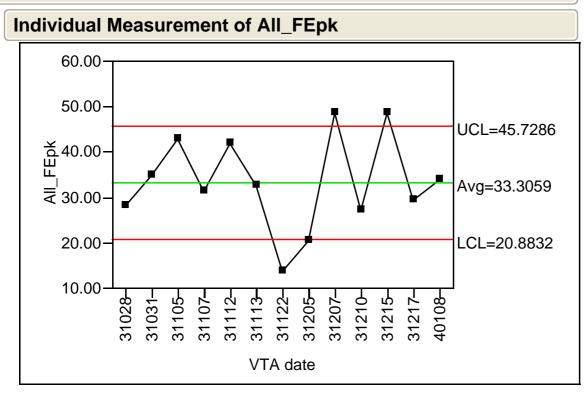
-HPR 2 x 2 hours, 1200 PSI, drain in between, transfer to Class 10, dry overnight

-Assembly of final flange, evacuate in Class 100, leaktest, isolate with valve

-Move out of cleanroom to vertical test area and insert into test stand

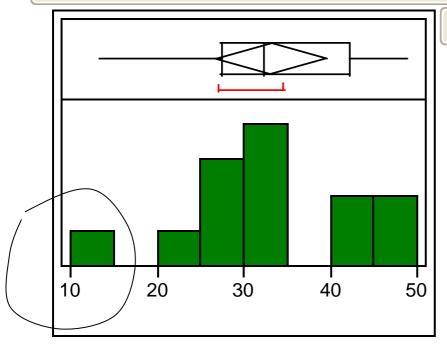
-Insert into dewar and cooldown, fill and pump to 2.1K

-RF test, warm up


TeslaMeeting04 JM

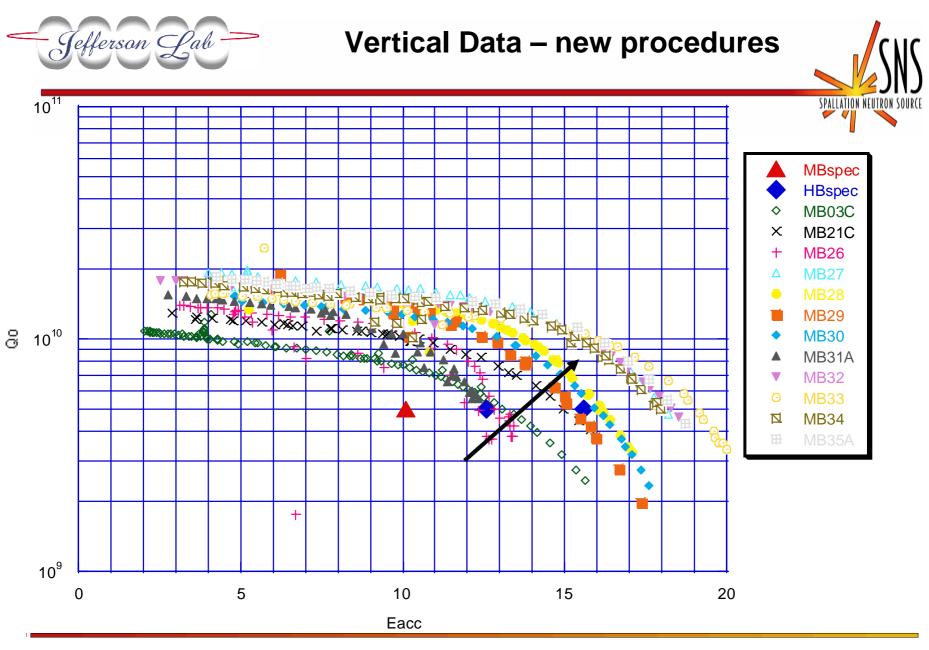
Performance Immediately Improved

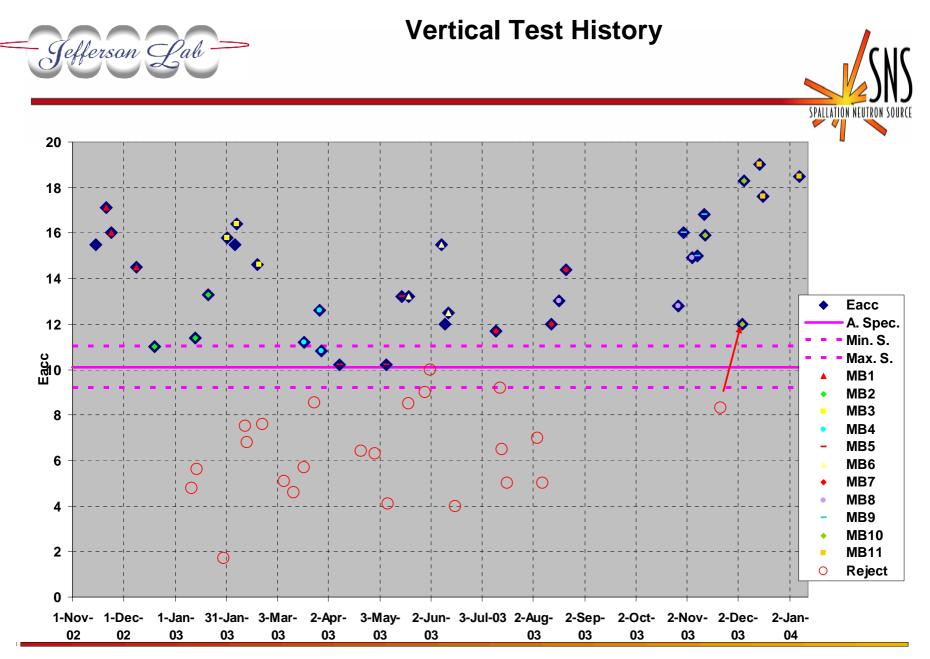
Control Chart



Current Vertical Data

Distributions


All_FEpk



Moments

Mean	33.3059
Std Dev	10.37726
Std Err Mean	2.878134
upper 95% Mean	39.576815
lower 95% Mean	27.034985
Ν	13

-HPR Pump FAILURE

TeslaMeeting04 JM

Remaining Tasks For High Beta

-Add additional rinsing steps before furnace treatment

-Improve HPR reliability and effectiveness

-Develop EP procedures and demonstrate performance

SPALLATION NEUTRON SOURCE

- BEFORE THIS REVIEW:
 - Qualification rate was low due to early FE-onset
 - Epeak FE -onset 21 MV/m, std dev 10.5
 - 50-60% success rate first test
- REVIEW IDENTIFIED AREAS OF IMPROVEMENT:
 - Process sequence modified dramatically
- CURRENT PERFORMANCE:
 - 12/14 passes first test
 - Epeak FE -onset 33 MV/m, std dev 10.4
 - Two failures, both due to HPR pump failures
- More Improvements To Come