### JRA1 SRF partner meeting Zeuthen Jan. 22, 2004

lstituto Nazionale di Fisica Nucleare

INFN



### Paolo Michelato, INFN Milano LASA

### WP2 task and objectives

WP2 (Improved Standard Cavity Fabrication, ISCF) aims at improving the present cavity fabrication technology.

It is based on the operating experience with superconducting cavities in the test linac TTF.

There is an obvious need to modify at least partially the cavity design and the preparation procedures to improve the performance and reliability of the SRF accelerating system.

## WP2

| WP 2     | Improved Standard Cavity Fabrication                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Task 2.1 | Reliability analysis                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|          | The performance of cavities and auxiliary components in TTF will be<br>analysed. A correlation between obvious degradation of performance<br>( <i>e.g.</i> , reduction of the usable accelerating gradient, enhanced dark<br>current) and unusual steps in fabrication and treatment procedures will<br>be investigated |  |  |  |  |  |  |  |  |
|          | Deliverables: reports, proposals for design and treatment changes                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Task 2.2 | Improved component design.                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|          | Based on the findings of task 2.1 design and treatment of components will be revised                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|          | Deliverables: Modified design of components, new methods of                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|          | cavity treatment, reports, drawings, work plans                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Task 2.3 | EB welding                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|          | New components will be fabricated for exploring the improved                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|          | performance                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|          | Deliverables: fabrication of prototypes (cavities, auxiliary                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|          | components)                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |

| SRF- leaders D. Proch, T. Garvey, deputy H. Mais |                                                |                              |             |  |  |  |  |  |  |
|--------------------------------------------------|------------------------------------------------|------------------------------|-------------|--|--|--|--|--|--|
| W                                                | ork package/Task                               | Work package/<br>task leader | Laboratory  |  |  |  |  |  |  |
| 1                                                | Management and Communication (M&C)             | D. Proch                     | DESY        |  |  |  |  |  |  |
| 2                                                | Improved Standard Cavity Fabrication (ISCF)    | C. Pagani                    | INFN Mi     |  |  |  |  |  |  |
|                                                  | 2.1 Reliability analysis                       | L. Lilje                     | DESY        |  |  |  |  |  |  |
|                                                  | 2.2 Improved component design                  | D. Barni                     | INFN Mi     |  |  |  |  |  |  |
|                                                  | 2.3 EB welding                                 | J. Tiessen                   | DESY        |  |  |  |  |  |  |
| 3                                                | Seamless Cavity Production (SCP)               | WD. Moeller                  | DESY        |  |  |  |  |  |  |
|                                                  | 3.1 Seamless cavity production by spinning     | E. Palmieri                  | INFN LNL    |  |  |  |  |  |  |
|                                                  | 3.2 Seamless cavity production by hydroforming | W. Singer                    | DESY        |  |  |  |  |  |  |
| 4                                                | Thin Film Cavity Production (TFCP)             | M. Sadowski                  | IPJ         |  |  |  |  |  |  |
|                                                  | 4.1 Linear arc cathode                         | J. Langner                   | IPJ         |  |  |  |  |  |  |
|                                                  | 4.2 Planar arc cathode                         | S. Tazzari                   | INFN Ro2    |  |  |  |  |  |  |
| 5                                                | Surface Preparation (SP)                       | L. Lilje                     | DESY        |  |  |  |  |  |  |
|                                                  | 5.1 EP on single cells                         | C. Antoine                   | CEA         |  |  |  |  |  |  |
|                                                  | 5.2 EP on multicells                           | A Matheisen                  | DESY        |  |  |  |  |  |  |
|                                                  | 5.3 Automated EP                               | E. Palmieri                  | INFN LNL    |  |  |  |  |  |  |
|                                                  | 5.4 Dry ice cleaning                           | D. Reschke                   | DESY        |  |  |  |  |  |  |
| 6                                                | Material Analysis (MA)                         | E. Palmieri                  | INFN LNL    |  |  |  |  |  |  |
|                                                  | 6.1 Squid scanning                             | W. Singer                    | DESY        |  |  |  |  |  |  |
|                                                  | 6.2 Flux gate magnetometry                     | M. Valentino                 | INFN LNL    |  |  |  |  |  |  |
|                                                  | 6.3 DC field emission studies of Nb samples    | X. Singer                    | DESY        |  |  |  |  |  |  |
| 7                                                | Couplers (COUP)                                | M. Omeich                    | IN2P3-Orsay |  |  |  |  |  |  |
|                                                  | 7.1 New proto-types                            | L. Grandsire                 | IN2P3-Orsay |  |  |  |  |  |  |

SRF Meeting, P. Michelato, Zeuthen, Jan.22, 2004

+ WP8: See P. Sekalsky talk

#### WP2 strategy, partially under way

Analysis of the performances of the TTF cavities
Analysis of auxiliary components
Identification of critical components
Identification of procedures and use for instance check list
Identification of week components or critical procedures
Correlation test (i.e. degradation vs. production procedure)
Identification of non foreseen or unusual steps in components

#### How?

Look carefully on the log books Database use and data archival procedures



#### Improve Standard cavity fabrication with ACCEL AND ZANON

# WP2 important dates

|         | F                                                 |       | 1                       |                   |                             |       |                       |       |       |               |
|---------|---------------------------------------------------|-------|-------------------------|-------------------|-----------------------------|-------|-----------------------|-------|-------|---------------|
| 15      | Task Name                                         |       | 2004                    | 2005              |                             | 2006  |                       | 2007  |       | <u>a</u>      |
| ID<br>1 | Task Name                                         | Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 | Qtr 4                       | Qtr 1 | Qtr 2   Qtr 3   Qtr 4 | Qtr 1 | Qtr 2 | Qtr 3   Qtr 4 |
|         | 2. Improved standard cavity fabrication           |       |                         |                   |                             |       |                       |       |       |               |
|         | 2.1 Reliability Analysis                          |       |                         | ~                 |                             |       |                       |       |       |               |
| 9       | 2.1.7 MS Final report on reliability issue        | -     | ◆ 240                   | 09                |                             |       |                       |       |       |               |
| 10      |                                                   |       |                         |                   |                             |       |                       |       |       |               |
|         | 2.2 Improved component design                     |       |                         |                   |                             |       |                       |       |       |               |
| 12      | 2.2.1Documentation retrieving                     |       |                         |                   |                             |       |                       |       |       |               |
| 20      | 2.2.1.9 MS Report about new design for components |       |                         | 23.12             |                             |       |                       |       |       |               |
| 21      | 2.2.1.10 Stiffness optimazation                   |       |                         |                   |                             |       |                       |       |       |               |
| 25      | 2.2.1.14 MS Final Report for new components       |       |                         |                   |                             |       |                       |       |       |               |
| 26      | 2.2.2 Review of criticality in welding procedures |       |                         |                   |                             |       |                       |       |       |               |
| 31      | 2.2.2.5 MS Report about welding parameters        |       |                         |                   | <sup>21</sup> <sup>21</sup> | 10    |                       |       |       |               |
| 32      | 2.2.3 Finalise new component design               |       |                         |                   |                             |       |                       |       |       |               |
| 34      | 2.2.3.2 MS New components design finished         |       |                         |                   |                             |       | <b>∳</b> _10.         | 10    |       |               |
| 35      | 2.2.4 Finalise new cavity design                  |       |                         | H                 |                             |       |                       |       |       |               |
| 37      | 2.2.4.2 MS New cavity design finished             |       |                         |                   |                             |       | <b>↓</b> _25.08       |       |       |               |
| 38      | 2.2.5 New design of complete cavity               |       |                         |                   |                             |       |                       |       |       |               |
| 40      | 2.2.5.2 MS New complete cavity design finished    |       |                         |                   |                             |       |                       |       | ₩     | 05.06         |
| 41      | 2.2.6 Fabricate cavity of new design              |       |                         |                   |                             |       |                       |       |       |               |
| 43      | 2.2.6.2 MS Cavity of new design finished          |       |                         |                   |                             |       |                       |       |       | <b>A</b>      |
| 44      |                                                   |       |                         |                   |                             |       |                       |       |       |               |
| 45      | 2.3 EB welding                                    |       |                         |                   |                             |       |                       |       |       |               |
| 46      | 2.3.1 Design tooling                              |       |                         |                   |                             |       |                       |       |       |               |
| 52      | 2.3.1.6 MS Tools design finished                  |       |                         | 1:42              |                             |       |                       |       |       |               |
| 53      | 2.3.2 Tools production                            |       |                         |                   |                             |       |                       |       |       |               |
| 59      | 2.3.2.6 MS Tools fabrication finished             |       |                         | <b>↓</b> 11_3     |                             |       |                       |       |       |               |
| 60      | 2.3.3 Welding                                     |       |                         |                   |                             |       |                       |       |       |               |
| 63      | 2.3.3.3 MS start production welding               |       | <b>*</b>                |                   |                             |       |                       |       |       |               |
| 66      |                                                   | 1     |                         | <b>▼</b>          |                             |       |                       |       |       |               |
| 67      |                                                   | 1     |                         |                   |                             |       |                       |       |       |               |
|         |                                                   | 4     |                         | 1                 |                             |       |                       |       |       |               |

#### <u>As an example</u>: cold flange development Different strategies in different laboratories

| Flance | Material |
|--------|----------|

- NbTi55
- Stainless Stell 316L

ITEMS

#### **Gasket Material**

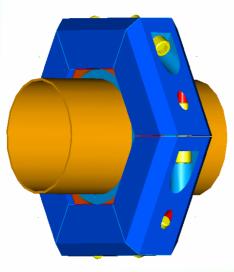
- Copper
- Aluminium
- Elicoflex

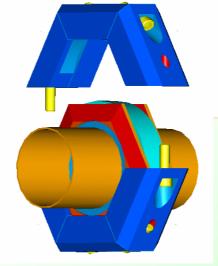
#### Pipe connection

- Welding

• EB

- Friction, explosive bonded, ...
- Brazing
- HIP


Sealing


- Bolts and Nuts
- Clamp
- Chain

| Lab                | TTF II             | Saclay             | KEK                    | SNS               |
|--------------------|--------------------|--------------------|------------------------|-------------------|
| Flange<br>material | NbTi55             | SS CF              | SS                     | NbTi55            |
| Gasket             | Al diam<br>shape   | Cu                 | Al square              | Al diam<br>shape  |
| Pipe<br>connection | EB                 | Brazing<br>(Au/Ag) | HIP (Cu<br>interlayer) | EB                |
| Sealing            | Cu ni sil<br>bolts | Bolts and nuts     | Bolts and nuts         | Special<br>clamps |
| BCP comp           | Yes                | Yes                | yes                    | Yes               |
| EP comp            | yes                | yes                | yes                    | yes               |
| 1400°C             | yes                | no                 | no                     | Yes (?)           |
|                    |                    |                    |                        |                   |

#### Development of components for large scale and high reliability cryomodule production e.g.: Cold Joint SS NbTi flanges

- •Study
- Development
- Optical microscope inspection
- Prototype production
- •Warm and cold test (4 and 2K)
- •Leak test





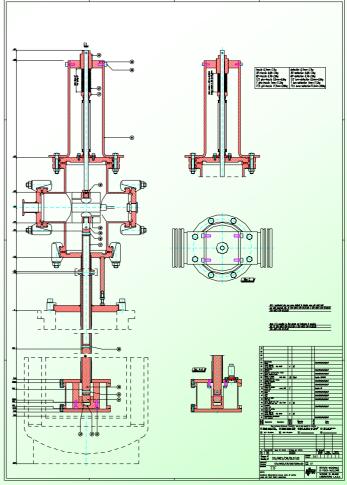


SRF Meeting, P. Michelato, Zeuthen, Jan.22, 2004

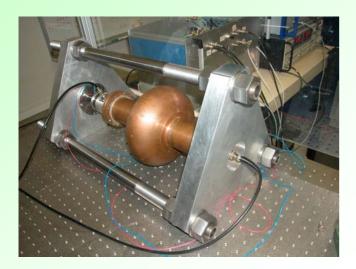
## WP8

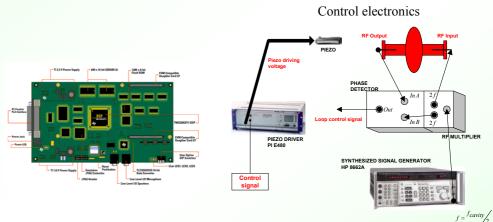
#### INFN Milano is also involved in WP8: See P. Sekalsky talk

WP8 (Tuners) The development of active tuner systems is imperative for operation of SC cavities at high gradient. Four of the participating laboratories are investigating innovative tuner systems as well as developing the electronic drive circuitry necessary for them. These tuners are the deliverables of this WP. Especially innovative will be the development of tuners based on piezo-electric and magneto-strictive effects. Tuners are required to counteract the so-called Lorentz de-tuning effect when the cavities are pulsed at high field so as to maintain the phase and amplitude constant during the RF pulse, whilst minimising additional RF power needed for field control. We aim to develop tuners capable of correcting 1 kHz of detune so allowing the cavities to operate stably at 35 MV/m. This should be compared with existing tuners on TTF which correct for fields of ~ 15 - 20 MV/m. Long life-time is also a major issue and we aim to develop tuners allowing for 20 years of operation.


### Characterization of the load cell

A new insert was designed to host different load cells and the load generating device. Our goal is the characterization of the sensor at 4 K up to 2kN.



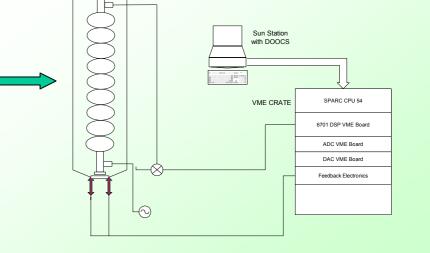


A load cell under test - from Burster

- The button on the cell is **pushed** by stainless steel rod, 20 mm diameter.
- The loading force is **generated** by a screwing device provided with washer springs at the top of the insert.
- The loading force is **measured** by a calibrated load cell placed in the cross junction, working at room temperature. SRF Meeting, P. Michelato, Zeuthen, Jan.22, 2004



### Microphonics feedback control loop facility






C6711 DSP board for digital filtering

The single cell cavity and its high-stiffness environment, hosting the piezoelectric actuator



A feedback loop will be implemented for the compensation of microphonics



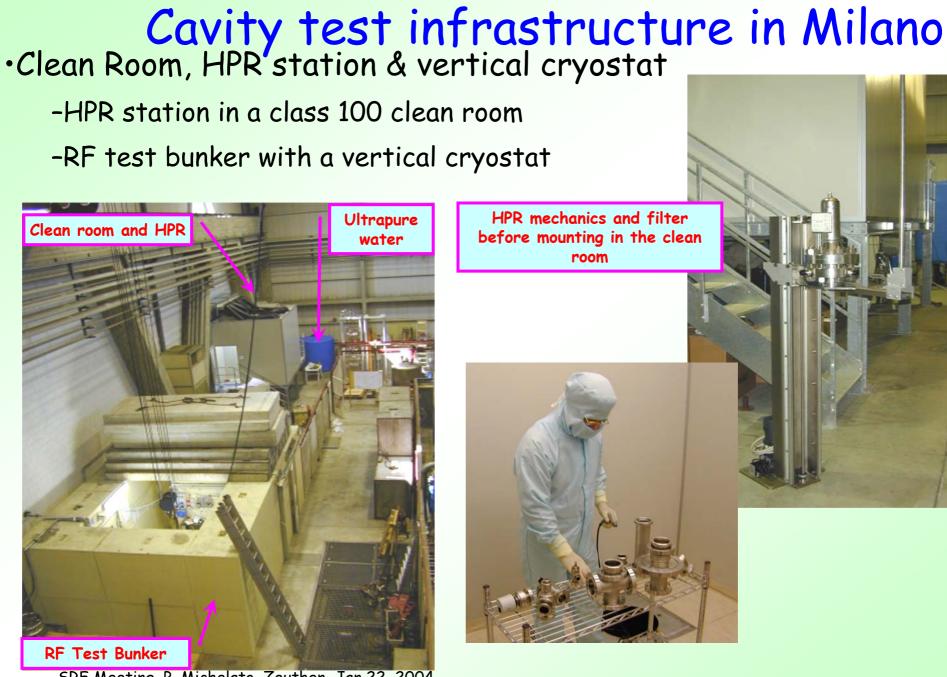
SRF Meeting, P. Michelato, Zeuthen, Jan. 22, 2004

### WP8

|    | 4e trimestre                         |       | 1er tr | imestr | e     | 2e tri | mestre |            | 3e tri     | mestre  | 4e tri | mestre | ;     | 1er ti | rimestre   | 2e tri | mestre |     | 3e trir |
|----|--------------------------------------|-------|--------|--------|-------|--------|--------|------------|------------|---------|--------|--------|-------|--------|------------|--------|--------|-----|---------|
| N⁰ | Nom de la                            | Déc   | Jan    | Fév    | Mar   | Avr    | Mai    | Jui        | Jul        | Aoû Sep | Oct    | Nov    | Déc   | Jan    | Fév Ma     | Avr    | Mai    | Jui | Jul     |
| 1  | WP8: TUNERS                          |       | ./     |        |       |        |        |            | :          |         | :      |        |       |        |            | :      |        |     |         |
| 2  |                                      |       |        |        |       |        |        |            |            |         |        |        |       |        |            |        |        |     |         |
| 3  | 8.1 UMI Tuner                        |       |        |        |       |        |        |            |            |         |        |        |       |        |            |        |        | -   |         |
| 4  | Develop control electronics          |       |        |        |       |        |        |            | <b>b</b> . |         |        |        |       |        |            |        |        |     |         |
| 5  | Mechanical design of tuner           |       |        |        |       |        |        |            | Č          |         | h.     |        |       |        |            |        |        |     |         |
| 6  | Study leveragesystem/motor           |       |        |        |       |        |        |            |            |         | Č      |        |       |        |            |        |        |     |         |
| 7  | Integration of piezo deign           |       |        |        |       |        |        |            |            |         |        |        |       | h.     |            |        |        |     |         |
| 8  | Choice of transducer/piezo actuato   | or    |        |        |       |        |        |            |            |         |        |        |       | Č      |            |        |        |     |         |
| 9  | 8.2 Magneto-strictive Tuner          |       |        | ~~~~~  | ~~~~~ | ~~~~~  | ~~~~~  | ~~~~~      | ******     | ~~~~~~  | •••••  |        |       |        |            |        |        |     |         |
| 10 | Complete specification               |       |        | h,     |       |        |        |            |            |         |        |        |       |        |            |        |        |     |         |
| 11 | Conceptual design                    |       |        | Č      |       | h.,    |        |            |            |         |        |        |       |        |            |        |        |     |         |
| 12 | Protoype and performance             |       |        |        |       | Č      |        |            | <b>L</b>   |         |        |        |       |        |            |        |        |     |         |
| 13 | Finalise tuner and drive electronics | des   | gn     |        |       |        |        |            | Č          |         |        |        |       |        |            |        |        |     |         |
| 14 | Installation and test of tuner       |       |        |        |       |        |        |            |            |         |        |        |       |        |            |        |        |     |         |
| 15 | 8.3 CEA Tuner                        |       |        | ~~~~~  |       | ****** | ~~~~~  | ~~~~~      | ~~~~~      | ~~~~~~  |        | ~~~~~  | ~~~~~ | ~~~~~  |            |        |        |     |         |
| 16 | Design Piezo + Tuning System         |       |        |        |       |        |        | <b>W</b> L |            |         |        |        |       |        |            |        |        |     |         |
| 17 | Fabrication                          |       |        |        |       |        |        | Ě          |            |         |        |        |       |        |            |        |        |     |         |
| 18 | Installation RF                      |       |        |        |       |        |        |            |            |         |        |        |       | 8      |            |        |        |     |         |
| 19 | Declare "Ready for experiment"       |       |        |        |       |        |        |            |            |         |        |        |       |        | $\bigcirc$ | 15/03  |        |     |         |
| 20 | 8.4 IN2P3 Activity                   |       | /      |        |       |        |        |            |            |         | :      |        |       |        |            |        |        |     |         |
| 21 | Characteise actuators/piezo-senso    | rs at |        |        |       |        |        |            | h.         |         |        |        |       |        |            |        |        |     |         |
| 22 | Test radiation hardness of piezo tu  | ners  |        |        |       |        |        |            | Č          |         |        |        |       | h,     |            |        |        |     |         |
| 23 | Integration of piezo and cold tuner  |       |        |        |       |        |        |            |            |         |        |        |       | Č      |            |        | b,     |     |         |
| 24 | Cryostat tests                       |       |        |        |       |        |        |            |            |         |        |        |       |        |            |        | Č      |     | Ļ       |
| 25 | Tests with pulsed RF                 |       |        |        |       |        |        |            |            |         |        |        |       |        |            |        |        |     |         |

SRF Meeting, P. Michelato, Zeuthen, Jan.22, 2004

### INFN-Mi

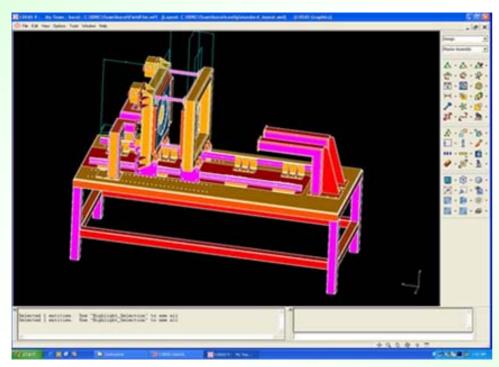

LASA is involved in the design of superconducting linacs (for example for a high intensity cw proton linac for waste transmutation) and in manufacturing components. Single cell and five-cell, superconducting, low beta elliptical cavities (704 MHz, beta 0.5) have been designed and produced. They will be tested in a vertical test facility after high pressure rinsing (HPR) in a class 10-100 clean room.

The Laboratory has designed and upgraded the TTF cryostats, which have been manufactured under LASA's supervision in industry and have been assembled at DESY with the collaboration of DESY experts.

Large expertise also exists in topics relevant to JRA PHIN. For example, photo cathodes are routinely produced at LASA and new materials and analyzing techniques are studied for an improved performance of the cathode production.

### Infrastructures available at LASA

- Class 10-100 Clean Room
- Ultra Pure Water and HPR (High Pressure Rinsing)
- Cryostats and RF for cold tests
  - RF tests possible from 450-820 MHz (1.3 GHz soon)
  - Tests limited by helium and technical support
- Instrumentation




SRF Meeting, P. Michelato, Zeuthen, Jan. 22, 2004

### Field Flatness tooling

# Z502 is on the tool for the field flatness

- (before end of 2003)
- Small fix, remachine flanges



SRF Meeting, P. Michelato, Zeuthen, Jan.22, 2004



