Heveay Field Emission Problem in Electropolished Multi-Cell Cavities

High Energy Accelerator Research Organization (KEK), Accelerator Lab Kenji Saito

Outline

- 1. Bad Performance with Recent 972MHz, β =0.725 9-cell Cavities
- 2. Field Emission and Multipacting Analysis
- 3. Pass-band Measurement
- 4. Discussion and Summary

9-24-1

972MHz-Cavitv-I -全体以

972MHz 9-cell Cavity (L-cavity) for KEK/JAERI Joint R&D

生)3つのボートの中心は同位置でない

f=972MHz

 β =0.725 (~400MeV)

Ep/Eacc=3.07

Hp/Eacc=55.4 Gauss[MV/m]

 $R/Q=47.8 \Omega$

 $G=208.0 \Omega$

Cell to cell coupling =2.8%

designed by E.Kako

1. Bad Performance of The Recent 972MHz 9-Cell Cavities

L1st, R1st : BP+EP(100)+ANL(750°C)+ EP(50~30)+Hot rinsig +HPR(DI, 2hr)+UPW +Bake(120°C,48hr)

L2nd : EP(10)+H₂O₂ rinsing +Hot rinsing + UPW, "No HPR", + Bake(120°C,48hr)

R2nd : EP(10)+ H₂O₂ rinsing +Hot rinsing + HPR(DI,4hr)+UPW, +Bake(120°C,48hr)

L3rd : HPR(DI, hr)+UPW, +Bake(120°C,48hr)

KEK has confirmed the serious field emission problem in electropolished multi-cell cavities same as DESY or JLAB.

2. Field Emission Analysis

The same FE behavior in both cavities

Evaluation of Emission Size and β

$$\Delta \left(\frac{1}{Q_o}\right) = \frac{1}{Q_o(E_p)} - \left(A + B \cdot E_p^2\right), \qquad \Delta \left(\frac{1}{Q_o}\right) = S \cdot E_p^{1.5} \cdot \exp\left(-\frac{5.46 \cdot 10^4}{\beta \cdot E_p}\right), \qquad E_p = 3.07 \cdot E_{acc} [MV / m]$$

Cavity No. & Meas. No.	Emitter size S	Field enhancement Factor β	Preparation
972L-1st	2.02E-7	627	EP(50)+Hot rinsing+HPR(2hr)+UPW+Bake
972L-2nd	7.97E-7	389	EP(10)+H ₂ O ₂ rinsing+Hot rinsing+ UPW+ Bake "No HPR"
972L-3rd	1.08E-9	360	HPR(4hr)+UPW+Bake
972R-1st	5.62E-7	619	EP(30)+Hot rinsing+HPR(2hr)+UPW+Bake
972L-3rd	3.41E-8	283	EP(10)+H ₂ O ₂ rinsing+ Hot rinsing+ <u>"HPR(4hr)"</u> +UPW+Bake

- 1) H₂O₂ rinsing reduces β about half.
- 2) HPR decreases the emission size remarkably but has less effect on β .

How effective is the long hour HPR?

The long term HPR for totally 7~10 hours is needed in order to decrease the emission size.

Multipacting Analysis

Onset field of Multipacting

$$\frac{H_p[Gauss]}{f[MHz]} = \frac{0.3}{n} , \quad n = 1, 2, \cdots \text{ for One Point MP}$$

$$\frac{H_p[Gauss]}{f[MHz]} = \frac{0.6}{2n-1} , \quad n = 1, 2, \cdots \text{ for Two Point MP}$$

The field emission will be initiated by multipacting

2P-3rd, 2P-2nd or 1P-1st.

H₂O₂ rinsing pushes down multipacting from higher order to lower one.

3. Pass-band Measurement

The $1/9 \pi$ mode is missing due to the weak coupling by our input coupler.

FE and MP Analysis with Pass-band Modes

Every mode looks like FE initiated by MP.

The $8/9\pi$ -mode behaves badly. \longrightarrow End cells might be problem.

Problem Cell

From FE Analysis

From MP Analysis

The problem might be in the both end-cells or one of them.

4. Discussion and Summary

- 1) KEK has confirmed the heavy FE with electropolished multi-cell cavities same as DESY or JLAB.
- 2) This FE problem would be initiated by multipacting.
- 3) The rinsing method in the TRISTAN SC cavities, which consists of H₂O₂ rinsing and long term water rinsing, is not helpful against this FE problem.
- 4) However the H_2O_2 rinsing (40 min) pushes down multipacting to the lower order. In an addition, this rinsing is effective to decrease the field enhancement factor β . The further long term H_2O_2 rinsing might be effective.
- 5) From the effect of the H_2O_2 rinsing, sulfur contamination in electropolishing is strongly suggested as the origin of the multipacting.
- 6) HPR reduces the emission size remarkably but is less effective to decrease β on this FE problem. The longer term HPR should be effective.
- 7) For the TESLA production, a more effective rinsing method has to be developed for time saving.