Warsaw University of Technology Institute Electronic System

ELHEP Group - activities in TESLA

http://tesla.desy.de/~elhep

Tomasz Jezynski tjezynsk@mail.desy.de

ELHEP Group Warsaw University of Technology Institute Electronic System

Team:

About 20 people scientists, engineers and students (Ph.D. and M.Sc.) working at: Warsaw, CERN, DESY

• CERN, CMS

- Muon trigger
- Data transmission system
- Radiation tests

• DESY, ZEUS, BAC detector

- Trigger
- Readout
- Diagnostic system

• DESY, ZEUS, VETO detector – Readout

Activity in TESLA

Cavity and RF GUN controller

Cavity and RF GUN simulator

Radiation tests

Cavity and RF GUN controller

Based on FPGA XILINX Virtex 2

 Response < 100 ns (32 cavities)
 Feedforward

Nallatech board

- 2 ADC @ 65 MHz
- 2 DAC @ 65 MHz
- Virtex XC2V3000

Nallatech board

Nallatech board

Cavity controller, DOOCS

Cavity controller, DOOCS

Cavity simulator

Based on FPGA XILINX Virtex 2

- Implemented electrical and mechanical model of cavity
- Step mode
- Continuous mode
- Access via Matlab
- Access via DOOCS

Cavity simulator

Radiation tests

Aluminum doped GaAs Light Emitting Diode (LED) as a cost effective and reliable Fast Neutron Detector for High Energy Particle Accelerator Applications

High energy neutrons produce ,,displacement damage" in Light Emitting Diodes (LED) which results in the reduction of ,,light output" of the LED (Figure 1).

On the other hand, high energy photons cause no such damage in the LEDs (Figure 2).

The above findings have been utilized to develop an inexpensive fast neutron detector for a myriad of applications in High Energy Pareticle Accelerator Monitoring.

Radiation tests

<u>Figure 1:</u>

Relative light output of the GaAs-LED shown as a function neutron fluence. The LEDs were irradiated with mono-energetic fast neutrons (ca. 60 MeV) at Harper Hospital Medical Cyclotron, Detroit, USA.

Figure 2:

Relative light output of the GaAs-LED shown as a function of gamma dose. The LEDs were irradiated with (⁶⁰Co) gamma rays at Hahn Meitner Institute Berlin.

