XFEL HOM absorber

- HOM absorber in cryo module (sept 2002)
- monopole losses
- HOM absorber / coupler
- absorber design
- absorber materials
- some questions

Sep. 2002: HOM Absorbers in Cryo Module

Measurements (500µs bunch train)

measured beampipe temperatures (S1, S2, S3)

solution of transient heat equation with boundary conditions S1,S3 and $P_{abs} \sim \langle I \rangle_{DC}$ $P_{abs} = P'_{abs}L_{pipe}$

TTF2: test absorber between module 2 & 3

TTF1, Sept 2002

TTF2

what is a hom absorber ?

absorbers in interconnections between modules T > 70K

monopole single passage losses **TESLA-TDR**

 $f_{rep} = 5 \text{ Hz}$ $T_{HF} = 0.95 \text{ ms}$ a) Collider (500GeV) losses per module (12x9cells):

 $\sigma_{bunch} = 400 \,\mu m$ $N_{bunch} = 2820$

P =23.3 W $N_{bunch} = 2820$ P(f > 5 GHz) = 17.4 W $q_{bunch} = 3.2 \text{ nC} (9.5 \text{ mA})$ P'(f > 10 GHz) = 12.7 WP'(f > 20 GHz) = 8.1 WP'(f > 50 GHz) = 3.0 WP'(f > 100 GHz) = 0.7 W

b) FEL

$$\sigma_{bunch} = 25 \ \mu m$$

$$N_{bunch} = 11315$$

$$q_{bunch} = 1.0 \ nC \ (12 \ mA)$$

losses per module (12x9cells):

$$P' = 14.2 \text{ W}$$

 $P'(f > 5 \text{ GHz}) = 11.5 \text{ W}$
 $P'(f > 10 \text{ GHz}) = 9.3 \text{ W}$
 $P'(f > 20 \text{ GHz}) = 7.1 \text{ W}$
 $P'(f > 50 \text{ GHz}) = 4.7 \text{ W}$
 $P'(f > 100 \text{ GHz}) = 3.1 \text{ W}$

monopole single passage losses TDR supplement

TDR supplement:

	Unit	Value
Final energy	GeV	101520
Injection energy	GeV	0.5
Accelerating gradient ^{*)} E_{acc}	MV/m	101723.5
Total length (incl. BC-III)	m	1380
Active length	m	859.4
Modules	#	78
Cavities	#	936
Klystrons	#	26
Bunch charge Q_b	nC	1
Bunch spacing Δt_b	ns	200
Bunch train length (max.)	$\mu {f s}$	800
Repetition rate	Hz	10
Average beam power	kW	600
AC power (RF and cryogenics)	MW	3.5

 * In the first linac section, the gradient is fixed at 18 MV/m for a constant beam energy of 2.5 GeV in the bunch compressor III.

Table 3.6.1: Overview of main parameters for the first stage XFEL linac.

bunch length ~ 25 μm

short range wake / length (I. Zagorodnov, TESLA 2003-19)

$$w_{\parallel}(s) = 41.5e^{-\sqrt{\frac{s}{1.74 \cdot 10^{-3}}}} \left[\frac{V}{pC \cdot m}\right]$$

Martin Dohlus Deutsches Elektronen Synchrotron zeuthen jan 2004

→ longitudinal loss parameter (25 µm): $k'_{\parallel} = 18.5 \cdot 10^{12} \frac{V}{Cm}$

 \rightarrow "single passage" losses (12 cavities):

$$P_{sp} = q^2 k'_{\parallel} L_{\text{length}} f_{\text{rep}} N_{\text{particles/pulse}} = 9.21 \text{ W}$$
per module

for comparison Q₀ losses: $E = 23.5 \frac{\text{MV}}{\text{m}}$ Q₀ = 10¹⁰ T_{rf} = 1.37 µsec

 $P_0 = 7.4 \,\mathrm{W}$ per module

monopole single passage losses (TDR supplement)

 $P_{sp} = q^2 k'_{\parallel} L_{\text{length}} f_{\text{rep}} N_{\text{particles/pulse}} = 9.21 \text{ W}$ per module

approximately (7.3 - 0.4) W can reach the absorber

absorber design

- thermal isolation to T < 70K
- thermal contact (cooling) to T = 70K
- electrical contact
- mechanical contact
- protection ?

it is not possible to design an absorber without boundary conditions !!! the material is probably not (the big) problem;

	requirements	Al ₂ 0 ₃ &Mo UNIPRESS	AIN & carbon CERADYNE	ferrite
comment		collaboration; reproducability ? furnace for large probes ?	used @ 2K in CEBAF; what material? large probes ?	used @ 300K In CESR
rf propperties	$P^{(t)}/P^{(inc)} > 0.5$ $\alpha(10\text{GHz}) > 1/(1\text{cm})$	ok for some materials 80 K test @ X-band (early probes)	ok for some materials 80 K test @ X-band	absorption mechanism for f > 10 GHz unclear;
dc conductivity @ 80 K !!!	depends strongly on geometry & holder >10 ⁻¹² S/m cylinder type >10 ⁻⁹ S/m rod type		2·10 ⁻⁹ S/m @ 300K	
thermal conductivity @ 80 K !!!	depends strongly on geometry & holder >100 W/(m·K) should be ok	≈ 150 W/(m⋅K) @ 86K		
radiation resistivity	no definition, so far			
vacuum		probes rejected	ZR10CB5 tested	
handling (mechanical prop., brazing,)		density & porisity measured; SEM photographs	ZR10CB5 used in module 1*	

absorption efficiency

(example)

$$\int \eta_{\text{absorber}}(\omega) dP = 5.86 \text{ W}$$

safty factor: $S = 0.9$
$$\int \eta_{\text{absorber}}(\omega) dP \cdot S = 5.27 \text{ W}$$

losses in n.c. surfaces:
 $6.9 \text{ W} - 5.27 \text{ W} = 1.63 \text{ W}$

single passage losses > 5 GHz (example)

dynamic losses @ 2K

+ static losses depend on available space!
@ 2K: ~ 0.15 W
@ 4K: ~ 3.58 W

some questions

- absorber per module or per two modules
- positon, space (boundary conditions)
- material
- dc conductivity (measurement setup?)