TESLA Collaboration Meeting

DESY, Zeuthen, 21-23 January 2004

Status of LC Technologies

Carlo Pagani

INFN Milano and DESY

On leave from University of Milano

Introduction

- 1st ILC-TRC Status and Recommendations
- Outstanding Results from Test Facilities
- 2nd ILC-TRC Recommendations
- Rankings and Results
- Conclusions

Next e+e- collider must be linear

Synchrotron Radiation (SR) becomes prohibitive for electrons in a circular machine above LEP energies:

$$U_{SR}[GeV] = 6 \cdot 10^{-21} \cdot \gamma^4 \cdot \frac{1}{r[km]}$$

- U_{SR} = energy loss per turn = relativistic factor = machine radius
- RF system must replace this loss, and r scale as E^2
- LEP @ 100 GeV/beam: 27 km around, 2 GeV/turn lost
- Possible scale to 250 GeV/beam i.e. E_{cm} = 500 GeV:

$$\gamma_{250GeV}$$
 = 4.9 . 10⁵

- 170 km around
- 13 GeV/turn lost
- Consider also the luminosity
 - For a luminosity of ~ 10³⁴/cm²/second, scaling from b-factories gives
 - ~ 1 Ampere of beam current
 - 13 GeV/turn x 2 amperes = 26 GW RF power
 - Because of conversion efficiency, this collider would consume more power than the state of California in summer: ~ 45 GW
- Both size and power seem excessive

LC conceptual scheme

What to do for Luminosity?

Parameters to play with

Reduce beam emittance $(\varepsilon_x \cdot \varepsilon_y)$ for smaller beam size $(\sigma_x \cdot \sigma_y)$

1 Increase bunch population (N_e)

Increase beam power ($P_b = N_e \cdot n_b \cdot f_{rep}$)

1 Increase beam to-plug power efficiency for cost

TESLA Collaboration Meeting Zeuthen, 21 January 2004

Competing technologies

TESLA Collaboration Meeting Zeuthen, 21 January 2004

Linear Colliders are pulsed

LCs are pulsed machines to improve efficiency. As a result:

- duty factors are small
- pulse peak powers can be very large

ILC-TRC (Greg Loew Panel)

International LC Technical Review Committee

 International Collaboration for R&D toward TeV-Scale e *e⁻ LC asked for first ILC-TRC in June 1994

ILC-TRC produced 1st report end of 1995

- 2001: ICFA requests that ILC-TRC reconvene to produce a second report with the following charge:
 - To assess the present technology status of the four LC designs at hand, and their potential for meeting the advertised parameters at 500 GeV c.m.
 - Use common criteria, definitions, computer codes, etc., for the assessments
 - To assess the potential of each design for reaching higher energies above 500 GeV c.m.
 - To establish, for each design, the R&D work that remains to be done in the next few years
 - To suggest future areas of collaboration

ILC-TRC produced 2nd report January 2003

http://www.slac.stanford.edu/xorg/ilc-trc/2002/2002/report/03rep.htm

LC status at 1st ILC-TRC

End 1995

E_{cm}= 500 GeV

		TESLA	SBLC	JLC-S	JLC-C	JLC-X	NLC	VLEPP	CLIC
f	[GHz]	1.3	3.0	2.8	5.7	11.4	11.4	14.0	30.0
L×10 ³³	[cm ⁻² s ⁻¹]	6	4	4	9	5	7	9	1-5
P _{beam}	[MW]	16.5	7.3	1.3	4.3	3.2	4.2	2.4	1-4
P _{AC}	[MW]	164	139	118	209	114	103	57	100
γε _y [[×10 ⁻⁸ m]	100	50	4.8	4.8	4.8	5	7.5	15
σ _y * [[nm]	64	28	3	3	3	3.2	4	7.4

1st ILC-TRC Recommendations

Baseline c.m. Energy stays at 500 GeV

- Push Luminosity to the maximum value
- Technology:
 - Demonstrate that the proposed technology can be pushed to the limits required for a Linear Collider
 - Demonstrate that the proposed technology can be produced in large scale by industry with high reliability and reasonable cost
 - Find solution for all critical items
- Design issues:
 - Demonstrate that very small spot sizes ($\sigma_x \cdot \sigma_y < 1 \ \mu m^2$) are possible
 - Investigate all beam physics critical issues
 - Support all design features with cross-checked simulations
 - Address reliability and availability issues
- Roadmap for energy upgrade
- Test Facilities

TTF for TESLA

TTF = TESLA Test Facility

TTF Goals:

- Demonstrate that Superconducting RF technology is suitable for LC
- Operate TTF at E_{acc} > 15 MV/m
- Develop cavity technology for Eacc > 25 MV/m

TTF as operated for SASE FEL

NLCTA = NLC Test Accelerator

NLCTA Goals:

- RF system integration test of a NLC linac section
- Test efficient, stable and uniform acceleration of a NLC-like bunch train

ATF = Accelerator Test Facility

ATF Goals:

- Demonstrate very low beam emittance
- Develop RF technology

CTF3 = CLIC Test Facility #3 (Under construction after CTF1 and CTF2)

Carlo Pagani

Zeuthen, 21 January 2004

Lessons from the SLC

SLC = SLAC Linear Collider

New Territory in Accelerator Design and Operation

- Sophisticated on-line modeling of non-linear beam physics.
- Correction techniques (trajectory and emittance), from hands-on by operators to fully automated control.
- Slow/fast feedback theory and practice.

1992 - 1998 SLD Luminosity

TESLA Collaboration Meeting Zeuthen, 21 January 2004

Carlo Pagani

2nd ILC-TRC Methodology and Rankings

Time-line

Summer 2001: ICFA requests a new report January 2003: Report published

Methodology

- Review current designs and status (achievements) of R&D, particularly the test facilities
- Identify the positive aspects of the designs
- Identify those areas of 'concern' and
- identify R&D that needs to be done to address these issues
- Categorise (rank) the R&D items

Ranking Criteria

- R1: R&D needed for feasibility demonstration of the machine.
- R2: R&D needed to finalize design choices and ensure reliability of the machine.
- R3: R&D needed before starting production of systems and components.
- R4: R&D desirable for technical or cost optimization.

2nd to 1st ILC-TRC Comparison

2003 vs. 1995 $E_{cm} = 500 \text{ GeV}$

		TESLA 2003	TESLA 1995	JLC/NLC 2003	<jlc nlc=""> 1995</jlc>	CLIC 2003	CLIC 1995
f	[GHz]	1.3	1.3	11.4	11.4	30.0	30.0
ل×10 ³	³³ [cm ⁻² s ⁻¹]	34	6	20	6	21	1-5
P _{beam}	[MW]	11.3	16.5	6.9	3.7	4.9	1-4
P _{AC}	[MW]	140	164	195	110	175	100
γε _y	[×10 ⁻⁸ m]	3	100	4	5	1	15
σ_{y}^{*}	[nm]	5	64	3	3	1.2	7.5

Ranking Score Sheet

	TESLA		JLC-C	JLC-X/NLC		CLIC		Common
E_{cm} [GeV]	500	800	500	500	1000	500	3000	
R1	0	1	2	2	0	5	2	0
R2	7	4	2	3	0	6	2	8
R3	10	3	3	11	0	5	0	19
R4	1	0	1	2	2	0	0	8

R1 Comparison

TESLA

$E_{cm} = 500 \ GeV$

 No feasibility demonstration is required for TESLA 500

$E_{cm} = 800 \ GeV$

 Building and testing of a cryomodule at 35 MV/m and measurements of dark current by end 2003

NLC/JLC

$E_{cm} = 500 \text{ GeV \& 1 TeV}$

- Test of complete accelerator structure at design gradient with detuning and damping, including study of breakdown and dark current
- Demonstration of SLED-II pulse compressor at full power

R1: feasibility demonstration required?

R1: R&D needed for feasibility demonstration of the machine.

	Modulators	Klystrons	RF Distribution	Accelerator Structures
TESLA	No	No	No	No (500 GeV) Yes (800 GeV)
NLC/JLC-X	No	No	Yes	Yes
JLC-C	No	No	Yes	Yes
CLIC	Yes	Yes	Yes	Yes

From Chris Adolphsen talk at ALCW, July 2003

Common R2 Items

Common items related to all designs

Damping Rings

- Electron cloud effects
- fast ion instabilities
- Extraction kicker stability
- Tuning simulations

• LET: Low Emittance Transport

- Static tuning studies
- girder/cryomodule prototypes to study stability (vibration)
- Critical beam instrumentation

Reliability

 Detailed evaluation of critical subsystems reliability

R2 Comparison

TESLA

- Test of complete main linac RF sub-unit (as in TDR) with beam
- Tests of several cryomodules running at gradient 23.4 MV/m for a prolonged period of time
 - quench rates, breakdowns, dark current
- One versus two tunnels (reliability)
- DR dynamic aperture
 - wiggler end fields
 - minimise injection losses (P_{inj}=220kW)
- DR kicker development
- Head-on versus crossing angle
 - extraction lines issues

NLC/JLC

- Test of complete X-band main linac RF sub-unit (as described in baseline design) with beam
- Full test of KEK 75 MW 1.6µs PPM klystron at 150/120 Hz
- Full test of SLAC induction modulator

TESLA Collaboration Meeting Zeuthen, 21 January 2004

SC vs NC Linac for LC

Advantages

- Low frequency wakes weak, klystrons easy
- Low power loss in structures and high conversion efficiency
- Low input power (230 kW per structure)
- Low beam current (8 mA)
- Long bunch spacing (337 ns) so bunch-by-bunch control easy
- Standing-wave cavities have gradient uniform along length

Disadvantages

- Tight frequency tolerances, mechanical, piezo-assisted, tuners needed on all cavities
- Beam instrumentation more demanding (large apertures)
- Long bunch train requires long DR (17 km around)
- Low repetition rate (5 Hz) makes train-by-train control harder
- Lower gradients Linac longer

One TESLA design problem

Dynamic aperture with sextupoles OK, but not yet sufficient with present wiggler model

Faster kickers would simplify DR design and reduce cost

0.12

0.08

0.04

0

0

injected

0.04

horizontal acceptance $\gamma A_r [m]$

A few comments on ILC-TRC

- Rankings reflect the concerns of the working groups, but ILC-TRC overall findings were extremely positive
- "did not find any insurmountable obstacle to building TESLA, JLC-C, JLC-X/NLC within the next few years..."
- "also noted that the TESLA linac RF technology for 500 GeV c.m. is the most mature."
- Assuming the R1s are demonstrated, the RF systems of the two machines will be on an equal footing...
- The ILC-TRC is a excellent example of what we can achieve when the LC accelerator communities work together
- Attempts to maintain the 'momentum' post ILC-TRC are dwindling

NLC/JLC RF Structures

Rounded Damped-Detuned Structure (RDDS)

Frequency	11.4	GHz
RF mode	2π/3	
Acc. Gradient	70	MV/m
Iris diameter	11.2-7.8	mm

Made with Class 1 OFE Copper.

Cells are precision machined (few μ m tolerances) and diffusion bonded to form structures.

Fill time \approx attenuation time \approx 100 ns, i.e. length 1.8 m.

Operated at 45°C with water cooling.

RF losses approx. 3 kW/m

RF ramped during filling to compensate beam loading (21%). In steady state ~ **50% input power goes into the beam**.

TESLA Collaboration Meeting Zeuthen, 21 January 2004

Carlo Pagani

Surface damage problem

An unexpected problem...

During conditioning of the first long NLC structures changes in the field profile were observed.

- surface damage due to field emission
- crater with approx. 30 μ m diameter
- after 1000 h high power operation a 20 deg. phase error was measured

C. Adolphson et al., RF Processing of X-Band Accelerator Structures at the NLCTA, LINAC 2000 Conference

Shorter structures required

New designs with lower v_a

53 cm Traveling-Wave Structure Group velocity 3.3% ≥ 1.6% c

Type T structure results: No Change in MW Properties

But

The T-Series design cannot be used in the NLC/JLC. •average iris radius, <a/l>
smaller (0.13) than desired (0.17-0.18), •transverse wakefield 3 times larger than acceptable.

Structures with <a/l> = 0.17-0.18 and with full damping.

Tests of 60 cm structures reach 65 MV/m, little overhead. Designs with higher shunt impedance in fabrication and test.

NLC/JLC RF Unit and DLDS

DLDS = Delay Line Distribution System (2 Mode, 4 Lines)

TESLA Collaboration Meeting Zeuthen, 21 January 2004

Recent Promissing Results

Still some problem for 65 MV/m But 60 MV/m should work fine

Major R1 goal for Power Distribution achieved in December 2003

Dual Moded SLED-II High Power Test

NLC/JLC Klystron Programs

NLC XP-Klystron

Major concern is 150 Hz repetition rate: Average power handling for both Klystron and Modulator is still insufficient, but improving. JLC PPM

TESLA Collaboration Meeting Zeuthen, 21 January 2004

The 9-cell TESLA cavity

Major contributions from: CERN, Cornell, DESY, CEA-Saclay

• 9-cell, 1.3 GHz

TESLA cavity parameters

R/Q	1036	Ω
E _{peak} /E _{acc}	2.0	
B _{peak} /E _{acc}	4.26	mT/(MV/m)
$\Delta f / \Delta l$	315	kHz/mm
K _{Lorentz}	≈ -1	Hz/(MV/m) ²

Eddy-current scanning system for niobium sheets

Cleanroom handling of niobium cavities

Preparation Sequence

- Niobium sheets (RRR=300) are scanned by eddy-currents to detect avoid foreign material inclusions like tantalum and iron
- Industrial production of full nine-cell cavities:
 - Deep-drawing of subunits (half-cells, etc.) from niobium sheets
 - Chemical preparation for welding, cleanroom preparation
 - Electron-beam welding according to detailed specification
- 800 °C high temperature heat treatment to stress anneal the Nb
- and to remove hydrogen from the Nb
- 1400 °C high temperature heat treatment with titanium getter layer
- to increase the thermal conductivity (RRR=500)

- Cleanroom handling:

- Chemical etching to remove damage layer and titanium getter layer
- High pressure water rinsing as final treatment to avoid particle contamination

TESLA Collaboration Meeting Zeuthen, 21 January 2004

Carlo Pagani

TESLA Learning curve with BCP

BCP = Buffered Chemical Polishing

3 cavity productions from 4 European industries: Accel, Cerca, Dornier, Zanon

Carlo Pagani

Zeuthen, 21 January 2004

3rd cavity production with BCP

Carlo Pagani

TESLA Collaboration Meeting Zeuthen, 21 January 2004

Recent results in module # 5

Zeuthen, 21 January 2004

TESLA 800 Performances with EP

EP (Electro-Polishing) developed at KEK by Kenji Saito (originally by Siemens) Coordinated R&D effort: DESY, KEK, CERN and Saclay

TESLA 800 in "Chechia"

- Long Term (> 1000 h) Horizontal Test ٠
- In Chechia the cavity has all its ancillaries ٠
- Chechia behaves as 1/8th (1/12th) of a TESLA cryomodule ٠

Recent results on AC70

Zeuthen, 21 January 2004

EP & 120°C backing are the key steps of the recipe Field Emission and Q-drop cured

- Maximum field is still slowly improving
- Negligible Field Emission detected, that is
- Negligible dark current expected at this field level
- Cavity can be operated close to its quench limit
- Induced quenches are not affecting cavity performances

TESLA RF Unit

1 klystron for 3 accelerating modules, 12 nine-cell cavities each

Zeuthen, 21 January 2004

TESLA Multi Beam Klystrons

Three Thales TH1801 Multi Beam Klystrons produced and tested

Achieved efficiency	65%			
RF pulse width	1.5 ms			
Repetition rate	5 Hz			
Operation experience	> 5000 h			
10% of operation time at full spec's				

Indipendent beam design proposed and built by CPI. Tests from February.

A new design proposed by Toshiba looks robust and should reach 75% efficiency First prototype tests expected on April this year

Carlo Pagani

Concluding remarks

- Priority on LC worldwide accepted and agreement on fundamental parameters converging
- International Linear Collider Steering Group, ILCSG, and associated panels, are working
- 12 "wise men" for technology choice have been nominated
- Technology choice expected by end 2004
- Regional and international design groups are being formed
- Globally coordinated R&D and design work, on a common chosen technology, is expected from beginning 2005
- Overlap with LHC is conceivable

A global LC can now be built Let's work together