UK LC-ABD Collaboration

UK Beam Delivery System Plans

Philip Burrows

Queen Mary, University of London

UK funding for accelerator science for particle physics 2004 - 2007

- UK funding agency, PPARC, secured from Govt. 15MEuro for 'accelerator science' for particle physics, spend period April 04 – March 07
- Called for bids from universities and national labs; large consortia were explicitly encouraged
- 5 bids received:
 - A total in excess of 30MEuro was requested!
- Bids peer-reviewed and preliminary allocations made Oct 21 2003:
 LC-Beam Delivery recommended to receive 10MEuro
 UKNF received 2.4MEuro
 2.6MEuro for national university-based accelerator institute

LC-ABD Collaboration

- Abertay
- Bristol
- Birmingham
- Cambridge
- Durham
- Lancaster
- Liverpool
- Manchester
- Oxford
- Queen Mary, Univ. London
- Royal Holloway, Univ. Of London
- University College, London
- Daresbury and Rutherford-Appleton Labs;
 spokespersons: Blair, Burrows
- 41 post-doctoral physicists (faculty, staff, research associates) + technical staff + graduate students

1. BDS Lattice Design and Beam Simulations

Bristol, B'ham, Daresbury, Lancaster, Liverpool, Manchester, Oxford QMUL, RAL, RHUL, UCL

1.1 BDS Lattice design:

Understand design issues, contribute to global development + optimisation:

working with Saclay on latest TESLA IR optics very interested in: collimation system, extraction line, diagnostics layout...

1.2 Beam transport simulations, backgrounds + collimation:

Cradle-to-grave simulations; database of TESLA train Xings, pairs, FB 64 cpu Grid cluster at QMUL for production jobs (30-40 cpu-hours)

Halo production and tracking through BDS

Collimator wakefields

Backgrounds in IR: pairs, gammas, n: -> VXD, calorimetry, FB system ...

We welcome your guidance, suggestions + input

Example: banana bunches, impact on FB

'Banana' bunch (PLACET/MERLIN)

Tracking of halo energy deposition (BDSIM)

2. Beam Diagnostics

2.1 Laserwire (RHUL, UCL, Oxford):

Ongoing collaboration on PETRA laserwire project UK building laser scanning system (multidirection) Simulations: halo backgrounds, diagnostics layout

• 2.2 Bunch length/profile measurement (Abertay, DL, Oxford):

Very successful electro-optic bunch length expt. at FELIX 600fs achieved; aiming for 200fs

R&D on Smith-Purcell radiation bunch profile monitor (Frascati) possible deployment at FELIX

Sub-ps bunch length measurement (EO)

600 fs achieved.
Ongoing project
at FELIX;
aiming for 200 fs

3. Alignment + Survey: LiCAS (Oxford)

LiCAS Simulation Results (TESLA)

Achieves goal for TESLA of 200 micron transverse alignment over 600m

LiCAS Development

Prototype survey car:

2004: Single-car sensor

2005: 3-car prototype

deployed in dedicated 70m

tunnel at DESY

2007: 5-car prototype available for use in TESLA XFEL tunnel

Prototype readout board

4. Final-focus Luminosity Stabilisation

(QMUL, Oxford, Daresbury)

Beam-based feedback:

Worked primarily on intra-train FB as complement to 'IP FB' (train-train) + active mech. stabilisation schemes (warm design)

Simulated intra-train FB for J/NLC, TESLA, CLIC

Location of FB BPM:

FONT Luminosity Recovery (TESLA)

FONT prototype at **SLAC NLCTA**

Dipole and kickers

Advanced BPMs

FONT2 initial results: feedback mode

Integration of Stabilisation and Feedbacks

Timescales/frequencies:

Survey + alignment: year (complete), weeks (local)

Beam-based alignment: weeks – days

Slow-orbit beam feedbacks: hours – minutes

Active stabilisation schemes: seconds – milliseconds

Pulse-pulse beam feedbacks: milliseconds

Intra-train beam feedbacks: microseconds (TESLA)

nanoseconds (J/NLC, CLIC)

Need to understand, through performance simulation, hand-over

between these systems: avoid: feedback 'competition'

frequency 'shuffling'

5. Positron Source Undulator + Crab Cavity

(Daresbury, Durham, Liverpool)

5.1 e+ source undulator design:

Baseline method for TESLA, in consideration for NLC Polarised e+ -> helical undulator (E166 expt)

Design work for TESLA helical undulator in progress:

Detailed engineering design, prototyping, test with beam

5.2 Crab cavity design (for IR with crossing angle):
 Overlap of interest with angle FB systems; UK RF company interest

6. Machine Detector Interface

(Bristol, Cambridge, Lancaster, UCL)

6.1 Measurement of Luminosity

Energy Spectrum (MOLES):

Absolute E (survey, alignment)

E jitter (fast BPMs)

E dispersion (laserwire?)

6.2 Small-angle fast calorimetry:

PbWO4 + vac photodiodes:

Rad hard + fast (no local amp)

6.3 IR layout + integration

Extremely important but not funded!

Summary and Outlook

- Embarked on a substantial UK LC BDS work programme
- Have expertise in some areas, learning in many others
- Aiming to build a strong, coherent design team: intellectually interested in BDS aim to prepare UK funding agencies for a UK LC contribution
- Collaborating w. European partners via 'Framework 6' programme:
 EU funded LC 'network' to facilitate interactions
 Drafting 'design study' proposal for LC design work
- We look forward to working with you all!