Precision
drift chambers (MDT)
for ATLAS muon system.

G.Chelkov JINR (Dubna)

DESY Zeuthen
10 September 2002
1. The quality of the muon measurement has been one of the guiding design criteria for the ATLAS experiment.

2. Muon spectrometer is the outer layer of ATLAS detector (average dimensions about 22 meters high and 44 meters long).

3. For the muon trajectory the determination of 3 points in the muon track are the minimum needed.

4. All together it lead us to the 5500 meters squared have to be covered by muon detectors or 400000 single drift tube detector, grouped in 1200 chambers.
ATLAS Detector
Geneva - Stockholm
Football ground
HOW WE ARE CONSTRUCTING OUR CHAMBERS?

Given the large area of the muon spectrometer it was necessary to devise a cheap but precise means of capturing the data. Several types of coordinate detectors are used at the MUON system. I am talking now about MDT detectors only which covered the 98.6% of full area is covered by ATLAS Muon system (5500 from 5580m²).

ATLAS has opted for a system of tubes (Monitored Drift Tubes chamber or MDT-chamber) grouped in 1200 chambers.

From mentioned above it should be clear that the process of MDT chamber construction and test is naturally divided into two parts:

• Tube assembling (wiring) and test.
• MDT Chamber assembling and test
MDT Muon Chamber
Chamber assembling scheme

Row materials
- Al tubes (Menziken), end-plugs (Nief), 50μ wire (Lumo)

Clean room #1
- DT assembling (wiring)
 - end-plug assembling
 - DT wiring

DT assembling (wiring)
- Control of Al-tubes
- Test of DT full length
- Test of wire tension

DT QA & DC
- Wire position test (X-ray)
- Leak test
- Complex test (Gas mixture+HV)

Clean room #2
- In-plane align.compon
 - Spacer components
 - Sensors (t,B)

Chamber assembling
- Incoming components QC and preparation
- Spacer assembling (gluing)
- In-plane alignment installat
- Gluing of tubes → Layers → Superlayers → Camber

To MPI (Munich)

To CERN
Procedure of drift tube wiring

The incoming industrially produced components for tube wiring is:

1. Thin wall precision Al – tubes;
2. Gold plated 50 μ tungsten-rhenium wire;
3. End-plug (which consist from end-plug body with high precision reference surface, wire holder for precise wire positioning, O-rings)

But as far as the performance of MDT muon system is determined by the performance of drift tubes and moreover there is no possibility to replace/repair single detector from the muon chamber the process of tube wiring and set of the tests must be relevant (QA/QC – procedure !!).
Drift tube construction and tube wiring

The scheme of the tube wiring is the following:
Drift tube components (photo)
PDT Working parameters:

Gas mixture: Ar(93)-CO₂(7) at 3 Bar
Voltage : 3120 V

QC requirements:

Dark current at 3400 V 2nA/m
Max count rate 20Hz/m
Max gas leak 10⁻⁸ Bar*l/s
Wire tension tolerance 17g
Wire position tolerance 25μ

Tests Sequence:

• Wire tension test (wiring line)
• Wire position test (X-ray)
• Gas leak & overpressure test
• HV & Functionality test
• Checking/packing/storing
• Wire tension (chamber assembling zone)

Test rate : 120 tube/day

Common solutions

• Each tube have unique Id code
• All tests are computer-based
• All results are automatically stored in DB
• Bar-code scanner is used for Id reading
Wire Tension Control

Simple wire tension meter based on “magnetic“ method

- Commercial PC extension board = 8 ADC & digital outputs
- Custom electronic module – DC source, amplifier and relay controlled via digital output.
- Wire may be connected either to DC source (send excitation pulse) or via amplifier to ADC

 - Wire excitation by current pulses
 - Digitization of the wire free oscillations
 - Oscillation spectrum extraction with FTT
 - Peak finding and base frequency extraction

No other equipment – even power is from PC
Fully programmable – easy to adopt and build-in into any PC – based system

10.09.02 DESY Zeuthen
Wire tension Control

Accuracy

$\sigma = 12 \text{ mHz at 50 Hz frequency}$
Wire Tension Control

PDT test results

<table>
<thead>
<tr>
<th></th>
<th>since 1.10.2000</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>tubes tested</td>
<td>9130</td>
<td>10932</td>
</tr>
<tr>
<td>tubes rejected</td>
<td>31 0.3 %</td>
<td>583* 5.3%</td>
</tr>
</tbody>
</table>
X-ray Test Station. Operation scheme.

Wire position tolerance : 25µ

Operation scheme:

[Diagram showing an X-ray test station with labeled parts: X-ray source, reference wires, wire, CCD matrix, and vacuum.]
X-ray Test Station (CCD)

And what do we get? –
image from CCD

Reference wires completely define wire position with respect to V-groove

Accuracy $\sigma = 2\mu$
PDT test results

<table>
<thead>
<tr>
<th></th>
<th>since 1.10.2000</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>tubes tested</td>
<td>8914</td>
<td>10710</td>
</tr>
<tr>
<td>tubes rejected</td>
<td>72 0.8%</td>
<td>149 1.4%</td>
</tr>
</tbody>
</table>
X-ray Test Station (photo)
Gas Leak Test (scheme)

Max leak: 10^{-8} bar*\(\text{l/s}\) = 0.3 mbar/day

Measurement principles:

- **Equilibrium**: \(P = k \times L\)
 - \(P\) – pressure
 - \(L\) – leak

- Use reference leak to define \(k\)!
- Use He as trace gas to avoid outgasing problem and make measurements less sensitive to system leak (no He in atmosphere)
Gas Leak Test (set-up)

Setup scheme:

• While first “torpedo” is under measurement another one is being prepared – “mass production”
• Measurement time ~ 3 min

Working condition in MS camera – UHV (~ 10⁻⁶ mbar)
Pressure inside torpedo < 1 mbar
Gas Leak Test (photo)
Gas Leak Test (LabView)

And how do we see the result?

MS output for the 0.25×10^{-8} Bar×l/s calibration leak

Sensitivity - better then 0.5×10^{-9} bar×l/s
Accuracy ~ 15 %

Real graphs with trace for 2 tubes. Last one have a leak about 0.7×10^{-8} bar×l/s

10.09.02 DESY Zeuthen
Gas Leak Test (results)

PDT test results

103958661 tubes tested over all since 1.10.2000

<table>
<thead>
<tr>
<th></th>
<th>since 1.10.2000</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>tubes tested</td>
<td>8661</td>
<td>10395</td>
</tr>
<tr>
<td>tubes rejected</td>
<td>74, 0.9%</td>
<td>111, 1.1%</td>
</tr>
</tbody>
</table>
HV & functionality test

Leak current limit : 2 nA/m

Principles

• Test a batch (up to 96) of tubes filled with standard gas mixture for a long time
• Slowly rise voltage while controlling current
• Drop voltage and rise it again if necessary for tube training
• Keep low humidity in test area

Based on CAEN 546 HV power supply module:
• 96 channels, voltage is set by groups of 12
• Current in each channel is controlled with 1 nA accuracy

L3 amplifier, 32-channel discriminators and 16-channel CAMAC scalers are used to control count rate

Test procedure is automatic
Time consumption:
~1 hour for tube connection
+ 1.5-12 hours for the test itself
HV test (photo#1)

How it looks like:

It is possible to test up to 96 tubes simultaneously
HV test (photo#2)

HV board

connected DTs

10.09.02 DESY Zeuthen
HV test (results)

PDT test results

<table>
<thead>
<tr>
<th></th>
<th>since 1.10.2000</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>tubes tested</td>
<td>8585</td>
<td>10299</td>
</tr>
<tr>
<td>tubes rejected</td>
<td>29, 0.3%</td>
<td>49, 0.5%</td>
</tr>
</tbody>
</table>
QC – final results

Our current results

<table>
<thead>
<tr>
<th>test</th>
<th>overall</th>
<th>Since 1.10.2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tested</td>
<td>rejected</td>
</tr>
<tr>
<td></td>
<td>Tested</td>
<td>Rejected</td>
</tr>
<tr>
<td>Wire tension</td>
<td>10932</td>
<td>583 5.3%</td>
</tr>
<tr>
<td></td>
<td>9130</td>
<td>31 0.3%</td>
</tr>
<tr>
<td>X-ray</td>
<td>10710</td>
<td>149 1.4%</td>
</tr>
<tr>
<td></td>
<td>8914</td>
<td>72 0.8%</td>
</tr>
<tr>
<td>Gas leak</td>
<td>10395</td>
<td>111 1.1%</td>
</tr>
<tr>
<td></td>
<td>8661</td>
<td>74 0.8%</td>
</tr>
<tr>
<td>HV & rate</td>
<td>10299</td>
<td>49 0.5%</td>
</tr>
<tr>
<td></td>
<td>8585</td>
<td>29 0.3%</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>About 2.2%</td>
</tr>
</tbody>
</table>

MDT Production and tests

Our current results

Dubna Tube Production (since 01.01.2001)
Responsibilities and work organization.

The construction of the Muon Spectrometer is such a big effort that it is shared between many laboratories:
Chamber assembling (1-st use).

Two uses widely used in the MDT chamber assembling procedure.

#1 - Assembling (gluing) precision components from non-very precision elements using high precision combs and glue.

\[\Phi 30^{+0}_{-0.05} \quad \text{glue} \quad \text{MD tubes} \]

\[30.035^{+0.005}_{-0.005} \]
Chamber assembling (2-nd ruse).

#2 Since deformation of such large (about 10 m²) object made form Al (not from marble!) can not be eliminated, one have to be able to control (and to compensate in a reconstruction procedure!) this deformation during all time period of chamber operation.
MDT Production. Step #1

Spacer assembling
MDT Production. Step#2

First layer gluing
MDT Production. Final step

Step#3 ➔ Turn up-side down. 2nd layer gluing
Step#4 ➔ Turn up-side down. 3rd layer gluing
Step#5-7 ➔ Turn up-side down. Next layer gluing
Workshop photos

10.09.02 DESY Zeuthen