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Abstract

The evaluation of SUSY energy scale is extremely important in order to know if
there is any chance to observe SUSY at LHC and at future colliders. Assuming gauge
uni�cation at high energy scale, this evaluation can be done with or without the b− τ
uni�cation predicted in GUT frameworks. The single scale approach has been used
and we found thatMSUSY cannot be greater than about 8.0 TeV. The b−τ uni�cation
occurs only when the threshold corrections are included. We also studied the Yukawa
couplings as functions of SUSY scale, tanβ and the threshold corrections. Moreover,
the prediction for the GUT energy scale and uni�ed gauge coupling is given.
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1 Introduction

The recent detection of the Higgs particle at LHC certainly represents a milestone which
has once again con�rmed the predictive e�ectiveness of the Standard Model (SM) of the
electroweak interactions. However, it is hardly to believe that the SM is the last step
toward the uni�cation, in a simple principle, of all the fundamental interactions. Several
phenomena or problems suggest the presence of physics beyond the SM. One can remind
just few of them, like the baryonic/leptonic number violation processes necessary at scale
larger than the electroweak one in order to yield baryogenesis, the problem related to the
separation of very di�erent energy scales in a �eld theory with scalars (hierarchy problem),
the hint of a uni�cation of all coupling constants for extreme large energy, the particular
structure of fermion masses, etc.
Furthermore, the SM does not include the gravitational force, whose quantum e�ects be-
come certainly relevant at the Planck scale

(
∼ 2.4× 1018GeV

)
. This energy scale repre-

sents a natural cut-o� of any �eld theory since above this level one expect a dramatic change
of the space-time structure, and for this reason theoreticians look for a more comprehensive
and fundamental theory of all interactions. The presence of such a natural cut-o� above
which QFT looses its validity exacerbates the hierarchy problem. The huge gap between
the electroweak energy scale, given by the Higgs mass, and the Planck energy scale strug-
gle to be separated once the radiative corrections are considered (quadratic divergences).
Indeed, the square of Higgs boson mass su�ers for ultraviolet divergent radiative correc-
tions which are quadratic functions of the cut-o�. These large quantum contributions to
the square of the Higgs boson mass would inevitably make the mass huge, comparable to
the scale at which new physics appears. To avoid this one should assume an incredible
and unnatural �ne-tuning cancellation between the quadratic radiative corrections and the
Higgs bare mass. For this reason one expects that some new phenomena should be at work
at large energy scale, like for example some sort of symmetry capable to solve or at least
to make mild the problem.
In this scenario, Supersymmetry (SUSY) is able to solve the hierarchy problem, or at least
to make milder it till to a more acceptable level. SUSY can explain how a tiny Higgs
mass can be protected from quantum corrections, removing the power-law divergences of
the radiative corrections to the Higgs mass. The recent measurement of the Higgs mass



1 INTRODUCTION 2

Figure 1: Two-loop running of the inverse gauge couplings in the SM (dashed lines) and the

MSSM (solid lines). The two set of solid lines represent a di�erent choice for MSUSY in the single

scale approach: the blue lines correspond to MSUSY = 0.5TeV while the red lines correspond to

MSUSY = 1.5TeV. This plot is taken by [1].

that results to be of the order of the top quark mass has worsen the so called small hier-
archy problem which still represents an unnatural feature of the Minimal Supersymmetric
extension of the Standard Model (MSSM). In this SUSY framework the gap between the
low energy scale and the Planck energy scale is �lled by the introduction of new matter
required by SUSY, giving the hope to discover new physics at LHC.
The introduction of new particles can give also an answer to the problem of dark matter. In
fact, as consequence of forbidding proton decay, the neutralino must be absolutely stable,
being the Lightest Supersymmetric Particle (LSP), and it is a candidate for dark matter.
Moreover, assuming SUSY as a broken symmetry of the Nature, the uni�cation of the
three gauge coupling constants is predicted at high energy scale

(
∼ 1016GeV

)
. On the

other hand, in the Standard Model the gauge uni�cation is not reached, even if the three
gauge couplings tend to get closer at high energy scale, as shown in Figure 1. For these
reasons, the idea of gauge uni�cation at high energy scale arise naturally. The aim of this
project is to study the level of viability of SUSY models after the LHC measurements.
Particularly, the evaluation of the SUSY energy scale (MSUSY ) at which the new particles
predicted can be detected is really important because it gives an indication of the chance
to test these new theories. This evaluation is done assuming the uni�cation of the three
gauge coupling constants at high energy scale. The goal is to give an update of previous
estimate of MSUSY given for instance in [2, 3].
In the second section, it is explained how the running can be performed, giving the de�ni-
tion the SUSY scale in the single scale approach, introducing the RGE and specifying the
experimental values taken into account. The third and fourth sections give an explanation
of the threshold e�ects and of how the Yukawa couplings can be included in the running.
In the �fth there is reported in detail the iterative method used. The sixth section is
dedicated to results related to both cases without and with the b− τ uni�cation. Finally,
the last section is the conclusions.
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2 RGE, Uni�cation and SUSY scale

The SM is extended by SUSY and the e�ective scale where we have the transition from SM
to SUSY is denoted as SUSY scale MSUSY. In general we can have more than one scales
because the spectrum of the new SUSY particles can be not degenerate: for instance,
squark and lepton masses can di�er for a factor of about 3. However, for the sake of
simplicity, it is common to use a single e�ective scale: in the single scale approach or the
so called �common scale approach� [4], all the new particles predicted by SUSY have the
same mass. It would be more suitable to adopt a multi-scale approach in order to describe
the more natural situation in which there is a severely split mass spectrum. However this
approach is more complicated and it is currently not available. Therefore, in the single
energy scale approach the energy scale MSUSY can be properly viewed as the e�ective
energy of SUSY breaking. This means that sparticles have di�erent masses, which are
below and above MSUSY. In this way, the energy MSUSY represents the energy at which
the intersection between the SM asymptotic solution and the MSSM asymptotic solution
occurs.
Our aim is to evaluate the range ofMSUSY in agreement with the recent experimental data
and the uni�cation gauge coupling constants1. For this reason, we developed a program
in Mathematica which resolves all the RGEs (other programs able for such a purpose are
RunDec [5], SPheno [6] and SoftSusy [7]). The RGEs are di�erential equations through
which we can translate physical quantities at an input scale into a set of predictions at an
another energy scale. We consider in our program RGE at two-loop order

d

dt
X =

1

16π2
β
(1)
X +

1

(16π2)2
β
(2)
X , (1)

where t = ln (M/M0) and X is a given coupling. Here, M0 represents the energy scale at
which we impose the initial conditions of the RGEs or, in other words, the energy scale at
which we impose the renormalization conditions. The β functions in the SM and in the
MSSM are well known and are given by [8, 9, 10, 11] and [12], respectively. We rightly
assume that only the Yukawa couplings for the heaviest particles of each family (i.e. top
and bottom quarks and tau lepton) give a considerable contributions. At two loops the
gauge couplings and Yukawa couplings are all coupled in the RGEs.
In the running from a low to a high energy scale, we need to add separately every particle
at its individual threshold, including matching conditions in agreement with the decoupling
theorem [13]. In the transition between SM and MSSM, the matching conditions due to the
introduction of all the superpartners must be take into account. Furthermore, since in the
SM the β functions are evaluated in the MS renormalization scheme while in the MSSM
they are evaluated using the DR renormalization scheme, we need also to take into account
the relations related to transition between these two di�erent schemes of renormalization.
Then, we need to impose a matching condition in order to decouple the heavy particles
not present in the SM and to ensure the change of regularization from DREG to DRED.
For these reasons, we use the data 2 reported in the second table of [14]. These data are
evaluated performing a Monte Carlo analysis with 1σ uncertainties. Furthermore, these
values have already been transformed from MS to DR scheme. Since there are reported

1We will consider the cases with and without b− τ Yukawa couplings uni�cation at the GUT scale.
2 By convention, we call these data as experimental data in the sense that they are obtained by evolving

the experimental data taken at low energy scale to µ =MSUSY .
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three di�erent set of data related to three di�erent values of MSUSY , we have performed a
parabolic �t in order to cover all the range between 0.5 and 10.0 TeV.
In order to impose the uni�cation of gauge coupling constants, for a given MSUSY we
could:

• evolve �rstly α1 and α2 from MSUSY ;

• �nd their intersection point which de�nes the values of αGUT and the energy MGUT ;

• evolve backward α3 using (αGUT , MGUT ) as initial point.

In this way, for each value of MSUSY we obtain a value of α3 at MSUSY which must be
compare with the experimental data. Hence, we obtain an estimate for the range ofMSUSY

in agreement with α3 (MSUSY ), obtained by the running.
This is precisely the purpose of such a work. It is important to point out that, if we follows
the same procedure in the framework of the SM, we will not �nd compatibility between
the uni�cation and the experimental values within the experimental errors.

3 Threshold corrections

The threshold corrections arise from including new particles in the running of couplings,
as the decoupling theorem states. In general, there are two kind of threshold corrections,
known as low and high thresholds. The former is related to the introduction of superpart-
ners in the transition between the SM and the MSSM, whereas the latter arises from the
introduction of the new particles predicted by the GUTs3. We have taken into account only
the low threshold corrections in the only case of single scale approach as in [14]. However,
in the more natural and true multi-scale approach, we should include threshold corrections
for each superparticle.
On the other hand, we are also interested in the running of Yukawa couplings, giving par-
ticular attention to the b − τ uni�cation (see [15] for recent study in similar direction).
Although the running masses are well known at low energy scale, this is not true for the
Yukawa couplings. Indeed, the threshold corrections (see [14, 16])

ySMt = yMSSM
t sinβ , (2)

ySMb = (1 + η) yMSSM
b cosβ , (3)

ySMτ = yMSSM
τ cosβ , (4)

must be take into account. Here η is the threshold parameter on bottom Yukawa coupling
and the angle β is de�ned by the ratio of VEVs taken by two Higgs doublet in the MSSM,
i.e. tanβ ≡ vu

vd
. These threshold corrections are related to tanβ-enhanced corrections,

which modify the tree-level relations (η = 0), to weak e�ects due to electroweak symmetry
breaking and to the possibility of having a split sparticle spectrum (multi-scale approach).
In this framework, η and β are free parameters. Consequently, there is some arbitrariness
in the initial conditions at MSUSY for the di�erential equations of Yukawa couplings. The
infrared �xed point of the renormalization group equation for the top Yukawa coupling
yields that the high energy situation is even more arbitrary. Indeed, a small di�erence in
initial conditions of top Yukawa coupling at low energy scale makes a huge di�erence at

3 For instance, in SU (5) we need to include the so called leptoquark.
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GUT energy scale. It would be really recommended to integrate these di�erential equations
backwards. In this way, we could study better the high energy region and estimate the
value of β which is a fundamental parameter in the MSSM phenomenology. Furthermore,
the threshold corrections related to η must be taken into account as shown in (3). For
these reasons, we impose the initial value of the top Yukawa at MGUT , checking later his
agreement with the experimental data at MSUSY .

4 Including Yukawa contributions in the RGE

As regard the b − τ uni�cation, imposing the initial condition of yτ at GUT energy scale
requires a very high precision since the error of yτ at MSUSY is too small. Therefore, we
use the mean value of yτ at MSUSY as initial condition of RGE and resolve its di�erential
equation up to MGUT . Here, we impose the b − τ uni�cation using yτ (MGUT ) as initial
condition of the bottom Yukawa RGE which is consequently resolved backward. In this
way, the agreement of b− τ uni�cation with the experimental data at MSUSY is given by
checking the obtained value of yb (MSUSY ) with its experimental value at MSUSY . Hence,
in order to characterize the theory at GUT energy scale and to impose the b−τ uni�cation,
knowing MGUT by studying the running of gauge coupling constants, for a given MSUSY ,
β and η we could:

• evolve backward yt from MGUT to MSUSY , using some arbitrary initial condition;

• evolve yτ using its mean experimental value, from bottom to top;

• evolve backward yb imposing yb (MGUT ) = yτ (MGUT ) as initial condition.

In this way, for each value of MSUSY , β and η we obtain the values of yt (MSUSY ) and
yb (MSUSY ) which must be checked with the experimental data at MSUSY .
However, the two-loop corrections to β functions complicate considerably the problem.
Unlike the one-loop case, each di�erential equation of gauge couplings depends on the
running of all gauge coupling constants and all Yukawa couplings, implying that they must
be resolve simultaneously. Therefore, we cannot resolve �rstly the di�erential equations
for g1 and g2, resolve backward the di�erential equation for g3, imposing the uni�cation,
and then studying the running of Yukawa couplings.
All previous arguments suggest anyway that the di�erential equations for g1, g2 and yτ
should be resolved from low to hight energy scales, whereas those for g3 and the other
Yukawa couplings should be integrated imposing initial conditions at GUT energy scale,
in order to impose the gauge uni�cation and the b− τ uni�cation and to give a prediction
on the value of β as function of threshold parameter η.

5 Method

We need to employ an iterative method to resolve all the RGEs as we want. For a given
value of MSUSY , β and η, the �rst step of the iterative method is to �nd the one-loop
solutions of all the couplings. In Figure 2 there is shown the steps necessary to �nd the
i + 1 solution knowing the i solution. Furthermore, we need to require that the theory
remains perturbative during the running.
Hence, the inputs of the program are

{MSUSY , g1 (MSUSY ) , g2 (MSUSY ) , yτ (MSUSY ) , yt (MGUT ) , tanβ, η} . (5)
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Figure 2: Steps of the iterative method implemented in the program which resolve the RGEs of

the gauge and Yukawa couplings, imposing the gauge uni�cation and the b − τ uni�cation. All

the red solid lines mean that the di�erential equations are resolved from low to high energy scales,

while all the black dashed lines mean that the RGEs are resolved backwards. Furthermore the red

circles represent the initial conditions of RGEs, whereas the black triangles are the results which

must be checked with the experimental data at MSUSY .

The �rst is the energy scale at which the constants must be run using the MSSM RGEs
in the common scale approach. The other three values are taken by the experimental
data. In particular yτ (MSUSY ) is always equal to the mean value, whereas g1 (MSUSY )
and g2 (MSUSY ) are taken randomly following their normal distribution. For a given value
of all the other inputs, we generate 200 di�erent pairs of g1 (MSUSY ) and g2 (MSUSY ).
The last three input values are arbitrary. We have that

• MSUSY comes from 0.5 TeV to 10.0 TeV with a step equal to 0.25 TeV, having overall
39 points;

• yt (MGUT ) is de�ned from 0.3 to 1.0 with a step equal to 0.025, having overall 28
points4;

• tanβ is de�ned from 5 to 60 with a step of 5.0, having overall 12 points;

• η comes from −0.6 to 0.6 with a step equal to 0.05, having 24 points.

On the other hand, the outputs of the program are

{g3 (MSUSY ) , yt (MSUSY ) , yb (MSUSY ) , α3 (MGUT ) , MGUT } . (6)

The �rst three values are used to check the agreement with the experimental data. The
check is performed asking if the obtained values are or not are within 3 sigma from their
mean values. In this way, we can discern the good choices of (MSUSY , yt (MGUT ) , tanβ, η)
from the bad ones, in the agreement with data and uni�cations. Furthermore, the last two
values (α3 (MGUT ) , MGUT ) describe instead the high energy region at which GUTs can
be implemented.

4The previous analysis has shown that there are not allowed values for yt (MGUT ) above 1.0.
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6 Results

We now report and discuss all of our results. First of all, we will consider what happens
by resolving all the RGEs without the b − τ uni�cation, i.e. imposing only the gauge
uni�cation. Then we will focus on the case of b− τ uni�cation.

Case without b− τ

We �nd that the requirements of gauge uni�cation and of agreement with experimental
data yield MSUSY to be less than 8.0 TeV, as shown in Figure 3a. Here and in all the next
histograms, the probability represents the relative number of points within bins. In the
histogram there is reported the marginalized distribution of MSUSY . We are in agreement
with [2], in which the estimate of allowed MSUSY is 103.0±1.0 GeV. This is an important
result since it shows that the gauge uni�cation can be reached in the framework of MSSM.
Indeed, the last measurements taken at ATLAS state the mass of the SUSY partners should
be greater than about 1.7 TeV. The Figure 3a shows that there are situations in which
MSUSY is larger that 2 TeV. However, we must remember that in the single energy scale
approachMSUSY represents an e�ective energy, meaning that sparticles can also have mass
below MSUSY The principle of naturalness yields that SUSY energy scale can be split by
a factor of 2 or 3. A greater split would leads to problem of so called little hierarchy.
The allowed values of threshold parameter η are shown in Figure 3c. Since we do not
impose the b − τ uni�cation, the only constraint on η is the requirement of perturbative
couplings. For large and negative values of η the bottom and tau Yukawa couplings become
nonperturbative. This is indeed shown in Figure 3c: the large and negative values of η are
disadvantaged.

Case with b− τ

In this case, the range of allowed values for MSUSY , shown in Figure 3b, is in agreement
with the previous case. Indeed, the range ofMSUSY is again between 0.5 TeV and 8.5 TeV.
However, this time the threshold parameter η is highly constrained by the requirement of
agreement with experimental values of yb (MSUSY ). Indeed, η takes on only four values,
from −0.25 to −0.10 (see Figure 3d).
Now, since we have to check also the obtained values of yb (MSUSY ) with the experimental
data atMSUSY , we expect that the range of allowedMSUSY depends deeply on the value of
threshold parameter η. Then, it would be very interesting to see how the range of MSUSY

depends on this threshold parameter. In Figure 4a there is reported the marginalized dis-
tribution of MSUSY as function of the four di�erent allowed values of η. It is important to
point out that we need a large and negative value of the threshold parameter η in order
to reach high values for MSUSY . If we sum on all the values of η, we will �nd the same
histogram shown in Figure 3b. However, the b − τ uni�cation can be reached only with
large threshold corrections from 10% to 25%.
In the Figure 4b the uni�ed gauge coupling is given as function of the GUT energy scale.
The graphs is obtained by taking all the points which are in agreement with the experi-
mental data at low energy. There is a considerable correlation between these values since
they are organized in a band. We point out that all the values of MGUT are above the
experimental limit coming from the proton lifetime.
As regards the Yukawa couplings, we are interested in their allowed values at GUT energy



6 RESULTS 8

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

MSUSYHTeVL

P
ro

ba
bi

lit
y

(a)

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

MSUSYHTeVL

P
ro

ba
bi

lit
y

(b)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.0

0.1

0.2

0.3

0.4

0.5

Η

P
ro

ba
bi

lit
y

(c)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.0

0.1

0.2

0.3

0.4

0.5

Η

P
ro

ba
bi

lit
y

(d)

Figure 3: The histograms show the allowed values of MSUSY and threshold η without and
with the b − τ uni�cation: (a) and (c) are without Yukawa uni�cation while (b) and (c)
are obtained assuming it.
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Figure 4: The plots are: (a) the range of SUSY energy scale as function of threshold
corrections; (b) the uni�ed gauge coupling as function of GUT energy scale.
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scale and their correlations with the other input parameters. The Figure 5a represents the
2-dimensional histogram of the top Yukawa coupling as function of the SUSY energy scale.
In this kind of histograms, the darkness of the colour is related to the number of points:
darker is the colour, more probable is the bin. Most of the points are at low MSUSY and
low yt (MGUT ), which is principally in the range from 0.50 to 0.60. The top Yukawa cou-
pling at MGUT and tanβ, are strongly correlated as shown in the 2-dimensional histogram
5b. This correlation is given by the relation (2). The histogram is quite uniform. However,
it is important to point out that in order to have large values of top Yukawa coupling at
MGUT we need a very large value of tanβ.
The tau lepton Yukawa is reported in Figure 5c as function of tanβ. Again it is clear
that the Yukawa couplings are strongly correlated with tanβ, since we have to impose the
matching conditions (2), (3) and (4) in the transition between the SM and the MSSM. It
is important to point out that yτ (MGUT ) is an output of the program. In Figure 5c, the
hole means that the region has not been explored with the choice of input parameters.
Finally, in the last 2-dimensional histogram (Figure 5d) the ratio between the two Yukawa
couplings is reported as function of tanβ.
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Figure 5: These 2-dimensional histograms show the correlations of Yukawa couplings with
MSUSY and tanβ. Here, darker is the colour, more probable is the bin.
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7 Conclusions

We have theoretical and experimental hints that the SM needs to be overcome. SUSY is
a possible extension of the SM that has been proposed to solve the hierarchy problem. In
particular, SUSY predicts the uni�cation of the three gauge couplings constants, suggested
by the SM itself, and gives a candidate for the dark matter. The MSSM needs to introduce
new particles as superpartners of the already observed SM particles. Therefore, we expect
new physics that could be discovered at LHC and at future accelerators.
The aim of the project is to study the compatibility of the uni�cation of gauge coupling
constants in agreement with the recent experimental data, giving an evaluation of range of
SUSY energy scale. We considered two cases: without and with b − τ uni�cation (in the
framework SUSY GUTs, as for instance SU(5)).
We have found that the allowed range of MSUSY is between about 0.5 and 8.0 TeV in
both cases considered. This range depends strongly by the threshold parameter η, which
must be quite large and negative (−0.25 ÷ −0.10) in order to achieve the b−τ uni�cation.
Without taking into account other threshold e�ects, related for instance to MGUT , this
result states that if SUSY is a broken symmetry of the Nature, then new physics could be
observed at LHC.
We also found that the top quark Yukawa coupling cannot be greater than 0.9 at MGUT .
This variable is strongly correlated with tanβ and with the threshold parameter η, as
expected because of the matching conditions at MSUSY .
Finally, the GUT region is also characterized: MGUT is around 1016GeV in agreement with
the previous studies, and a strong correlation between MGUT and αGUT is shown.
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